• Title/Summary/Keyword: Non-neuronal cells

Search Result 89, Processing Time 0.028 seconds

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.

The Effect of Goomcheongsim-won(구미청심원) Extracts on E20 Corticells and P7 Cerebellar Cells Exposed to Hypoxia (구미청심원이 저산소증 유발 배양신경세포에 미치는 영향)

  • 한기선;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.120-132
    • /
    • 2002
  • Objectives : The purpose of this investigation was to evaluate the effect of Goomicheongsim-won Extracts on E20 corticells and P7 cerebellar cells exposed to hypoxia, and the effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$. Methods : P7 cerebellar cells were grown in various concentrations of KM-A, KM-B, KM- C and KM-D. On 7 DIV (day in vitro), cells were exposed to hypoxia (98% $N_2/5%{;}CO_2,{\;}3{\;}hr,{\;}37^{\circ}C$) and normoxia, and then further incubated for 3 days. Neuronal viabilities were expressed as percentages of control. E20 cortical cells were grown in various concentrations of KM-A, KM-B, KM-C, and KM-D. On 7 DIV, cells were exposed to hypoxia and normoxia, and then further incubated for 3 and 7 days. Results : I. The effect of KM-A on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia. 2. The effect of KM-B on neuronal protection was increased P7 cerebellar granule cells on normoxia, but was significantly decreased P7 cerebellar granule cells on hypoxia. The effect of KM-B on neuronal protection was non-significantly increased E20 cortical cells on normoxia and hypoxia. 3. The effect of KM-C on neuronal protection was non-significantly increased P7 cerebellar granule cells on normoxia and hypoxia and was decreased (p=0.058) on hyperconcentration of the extracts in normoxia. The effect of KM-C on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia (10 DIV), and the effect was E20 cortical cells on normoxia (14 DIV), non-significantly increased E20 cortical cells on hypoxia (14DIV). 4. The effect of KM-D on neuronal protection was increased P7 cerebellar granule cells on normoxia but was not on hyperconcentration of the extracts, was significantly decreased on hyperconcentration of the extracts in hypoxia. The effect of KM-D on neuronal protection was significantly increased E20 cortical cells on normoxia and was significantly increased E20 cortical cells increased on hypoxia (10 DIV). Conclusions : Goomicheongsim-won extracts had applicable effect on E20 corticells and P7 cerebellar cells exposed to hypoxia. The effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$ was changed.

  • PDF

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Effects of PCB Congeners in Rodent Neuronal Cells in Culture

  • Kim, Sun-Young;Yang, Jae-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • We attempted to analyze the mechanism of polychlorinated biphenyl (PCB)-induced neurotoxicity and identify the target molecules in the neuronal cells for PCBs.Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old Sprague Dawley (SD) rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total protein kinase C (PKC) activity at phobol 12,13-dibutyrate ([$^3M$]PDBu) binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isozymes were immunoblotted with the selected monoclonal antibodies. PKC-${\alpha}$, ${\delta}$, and ε were activated with non-coplanar PCB exposure. Receptor for activated C kinase-1 (RACK-1), anchoring protein for activated PKC, was more induced with exposure to coplanar PCBs than non-coplanar PCBs. Reverse transcription PCR (RT-PCR) analysis showed induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA with non-coplanar PCBs. The results indicate that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. The present study demonstrated that non-coplanar PCBs are more neuroactive congeners than coplanar PCBs.

Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology

  • Valencia, McNeil;Kim, Sung Rae;Jang, Yeseul;Lee, Sung Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.605-614
    • /
    • 2021
  • Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.

Comparison of Somatostatin and Morphine Action on the Responses of Wide Dynamic Range Cells in the Dorsal Horn to Peripheral Noxious Mechanical and Heat Stimulation in Cats

  • Jung, Sung-Jun;Choi, Young-In;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.155-163
    • /
    • 1998
  • The purpose of present study was to compare the effects of somatostatin (SOM) and morphine (Mor) on the responses of wide dynamic range (WDR) cells to peripheral noxious stimulation. Single neuronal activity was recorded with a carbon-filament electrode at the lumbosacral enlargement of cat spinal cord. After identifying WDR cells, their responses to peripheral noxious mechanical or thermal stimuli were characterized and the effects of SOM and Mor, applied either iontophoretically or intrathecally, were studied. In most cells SOM and Mor suppressed noxious stimulus-evoked WDR neuronal activity, though a few WDR neurons showed no change or were excited by SOM and Mor. Systemically applied naloxone, a non-specific opioid antagonist, always reversed the Mor induced suppression of neuronal activity evoked by noxious mechanical stimuli, but did not always reverse the suppression of neuronal activity elicited by SOM. The suppressive effect of Mor on thermal stimulus-evoked neuronal activity was partially reversed by naloxone, while that of SOM were not reversed at all. The above results suggest that both Mor and SOM exert an inhibitory effect on thermal and mechanical stimulus-evoked WDR neuronal activity in cat spinal dorsal horn, but the mechanisms are dependent upon the functional populations of dorsal horn nociceptive neurons.

  • PDF

Quercetin ameliorates glutamate toxicity-induced neuronal cell death by controlling calcium-binding protein parvalbumin

  • Kang, Ju-Bin;Park, Dong-Ju;Shah, Murad-Ali;Koh, Phil-Ok
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.26.1-26.12
    • /
    • 2022
  • Background: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. Objectives: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. Methods: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. Results: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. Conclusions: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.

The Expression of nNOS in Hirschsprung's Disease (히르쉬스프룽병의 병변부위에서 nNOS 발현)

  • Kim, Ki-Hong;Kim, Han-Seung;Lee, Seong-Cheol
    • Advances in pediatric surgery
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • Abnormal distribution of enteric nerves such as adrenergic, cholinergic and non-adrenergic non-cholinergic nerves (NANC) may cause the failure of relaxation at the involved bowel segment in Hirschsprung's disease (HD). Nitric oxide (NO) is a major inhibitory NANC neurotransmitter in the gastrointestinal tract. NO is synthesized by activation of nNOS (neuronal nitric oxide synthase) in the intramural ganglion cells and regulates bowel movement. To assess the distribution of nNOS in HD, immunohistochemical staining to nNOS was utilized on paraffin embedded specimens. Ten control colon specimens were tested for feasibility of staining. Immunohistochemisrty was done on ganglionic colon as well as aganglionic segment of 15 patients with HD. nNOS immunoreactivity was observed in the neuronal cells, small cells and nerve fibers in the muscle layer and submucosal neuronal cells of control specimens. This finding was also observed in the ganglionic segments of HD. But, there was no nNOS immunoreactivity in aganglionic segments of HD. In conclusion nNOS immunohistochemical staining of paraffin embedded specimen is feasible and reliable. And the results suggest that the relaxation failure of the aganglionic bowel in HD is related to the absence of nNOS containing cells and nerve fibers.

  • PDF

Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan (PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과)

  • Kim, Sun-Young;Lee, Hyun-Gyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.