• 제목/요약/키워드: Non-linear stress-strain model

검색결과 94건 처리시간 0.026초

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

비균질 수정을 사용한 타원완화모형 개발 (Development of Elliptic Relaxation Model With The Inhomogeneous Correction)

  • 전건호;최영돈;신종근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.815-818
    • /
    • 2002
  • The elliptic relaxation model(ERM) with the inhomogeneous correction intermediate between near wall with and far from the wall. The source of the ERM usually was appled quasi-homogeneous pressure-strain correlation in homogeneous situations. This formulation was easily applied to the linear model or non-linear pressure-strain model. It is observed that the boundary conditions of the relaxation operator dominate the homogeneous pressure-strain model in the near wall region. While looking at high-Reynolds number flows, it was found necessary to modify the effect of the relaxation operator throughout the log region by accounting for gradients of the flatness variable and turbulent length scales. These effects are kinematic blocking of the wall normal velocity fluctuation and pressure reflections from the surface. This model is wall distances and unit vectors which make the model applicable to flows boundary by a complex geometry. Inhomogeneous correction model is computed inertial and non-inertial channel flow These are compared DNS(Kim et at., Kristofffrsen & Andersson) for channel flow. The present model could be predicted well for rotating flows.

  • PDF

압력포텐샬을 이용한 초탄성 유한요소 정식화 (Hyperelastic Finite Element Formulation using Pressure Potential)

  • 김헌영;김호;김중재
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

이등방성 콘크리트 모델을 이용한 폭발하중을 받는 철근콘크리트 슬래브의 비선형 동적해석 (Non-linear Dynamic Analysis of Reinforced Concrete Slabs Subjected to Explosive Loading Using an Orthotropic Concrete Constitutive Model)

  • 이민주;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제32권6호
    • /
    • pp.409-416
    • /
    • 2019
  • 본 논문에서는 폭발하중을 받는 철근콘크리트 슬래브의 비선형 해석을 위한 개선된 수치 모델을 제안한다. 제안된 모델은 2축 응력 상태를 반영한 등가 강도에 의해 정의된 응력-변형률 관계를 사용하여 응력 상태를 직접 결정하는 변형률 속도 의존 이등방성 구성 모델을 다룬다. 또한, 균열 발생 후 콘크리트와 철근 사이의 부착 슬립이 점차 확대되어 소성힌지 영역으로 집중된다. 2축 응력 상태에서 콘크리트의 균열 방향은 주응력 방향에 따라 달라지므로 이를 고려한 부착 슬립 모델을 해석에 도입하였다. 해석 모델의 검증을 위해 수치해석과 실험결과의 상관관계 연구(correlation studies)가 수행되었다. 해석결과는 재료모델의 2축 거동과 부착 슬립의 영향을 고려하는 것이 해석결과의 정확성 향상에 중요함을 보여주며 제안된 해석 모델이 철근콘크리트 슬래브 부재의 폭발해석에 효과적으로 사용될 수 있음을 확인하였다.

인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구 (High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network)

  • 이병호;;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

줄기 엽채소의 기계적 파지시 리올로지 특성 (Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine)

  • 전현종;김상헌
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • 제1권1호
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석 (Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass)

  • 송기일;정성훈;조계춘;이정학
    • 한국터널지하공간학회 논문집
    • /
    • 제12권4호
    • /
    • pp.295-306
    • /
    • 2010
  • 암석과는 달리 절리암반은 변형률 의존적 변형특성(탄성계수 및 감쇠비)을 나타낸다. 탄성파를 이용한 현장실험을 통해 미소변형률 수준에서 암반의 최대탄성계수를 얻을 수 있으며 이를 내진 설계에 반영하고 있으나, 미소 변형률 이상의 중변형률($10^{-4}{\sim}0.5%$) 영역의 동적거동에 대한 실험적인 규명과 이에 대한 수치적 적용은 전무한 실정이다. 본 연구에서는 변형률 의존적 전단탄성계수 및 감쇠비의 비선형 거동 특성을 반영하여 동적해석을 수행할 수 있는 FLAC3D 해석 모듈을 개발하였다. 리커 웨이브의 파동 변화를 분석하여 개발된 모듈에 대한 검증을 수행하였다. 절리 암반의 탄성파 전파특성과 동적 거동특성을 모사할 수 있는 절리암반 공진주 시험장비를 통하여 현장에서 채취한 절리암반의 변형률 의존적 전단탄성 계수의 감쇠 특성과 감쇠비의 증폭 특성을 획득하였다. 개발된 비선형 해석 모듈에 실험으로부터 획득된 거동 특성을 반영하여 수직구와 사갱의 접속부에 대한 내진 안정성 평가를 수행하였다. 내진해석 결과, 비선형 해석이 선형 해석보다 더 큰 연직변위와 수평변위 결과를 나타냈다. 라이닝의 휨압축응력은 수직구과 사갱의 접속부에서 집중되는 것으로 나타났으며 비선형해석의 경우 라이닝에 더 큰 휨압축응력이 발생되는 것으로 나타났다. 본 연구를 통하여 변형률 의존적 절리암반의 비선형 거동특성을 보다 깊이 있게 이해하고 해석 및 설계시 고려할 수 있을 것으로 사료된다.