• 제목/요약/키워드: Non-linear soil model

검색결과 107건 처리시간 0.026초

다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구 (Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model)

  • 안정우;정진아;박은규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링 (Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand)

  • 권선용;유민택;김석중
    • 한국지반공학회논문집
    • /
    • 제34권7호
    • /
    • pp.29-38
    • /
    • 2018
  • 액상화 시 지반-말뚝 시스템의 동적 거동을 정확히 예측하기 위해 상용 유한 차분 프로그램인 FLAC3D를 이용하여 시간영역에서 3차원 수치 모델링을 수행하였다. 지반의 전단변형에 따른 간극수압의 발달을 직접적으로 모사하기 위해 유효응력 해석법을 이용한 액상화 모델인 Finn model을 적용하였으며 Mohr-Coulomb 탄소성 모델에 접목되어 해석이 수행되었다. 이력감쇠모델을 적용하여 지반 비선형 거동을 고려하였으며 지반과 말뚝 간의 분리현상, 미끄러짐 현상을 모사하는 인터페이스 모델을 적용하였다. 경계조건으로써 단순화 연속체 모델링 기법을 도입하여 반사파의 생성을 막고 해석 효율을 증가시켰으며 적절한 최대지반탄성계수와 항복 깊이의 설정으로 비선형 거동을 정확히 모사하고자 하였다. Wilson(1998)이 수행한 원심모형시험 케이스 중 상부지반 상대밀도가 55%인 모델을 이용하여 제안된 모델링 기법의 캘리브레이션을 수행한 결과, 수치해석으로부터 도출된 깊이 별 과잉간극수압 비-시간 이력, 휨모멘트-시간이력, 말뚝 두부 변위-시간이력이 실험 결과를 잘 모사하였다. 상부지반 상대밀도가 30%인 모델의 결과를 이용하여 제안된 모델링 기법의 적용성 평가를 수행한 결과, 수치해석으로부터 도출된 지반 및 말뚝 응답이 실험 결과를 잘 모사하였으며 제안된 모델링 기법이 지반-말뚝 시스템의 액상화 거동을 적절히 모사한다고 판단되었다.

A merging framework for improving field scale root-zone soil moisture measurement with Cosmic-ray neutron probe over Korean Peninsula

  • Nguyen, Hoang Hai;Choi, Minha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.154-154
    • /
    • 2019
  • Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

  • PDF

탄성영역이 없는 J2-경계면 소성모델 (J2-bounding Surface Plasticity Model with Zero Elastic Region)

  • 신호성;오세붕;김재민
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.469-476
    • /
    • 2023
  • 반복하중이나 동적하중에 대한 지반의 소성모델은 지반구조물의 비선형 수치해석에 매우 중요하다. 단일 항복면 모델은 반복하중에 대해 선형적 거동을 보이는 반면, 개발된 탄성영역이 없는 J2-경계면 소성모델은 동일한 물성치로 효과적으로 지반의 비선형성을 모사할 수 있다. 경계면 내부 항복면의 반경을 0으로 수렴시켜 탄성영역이 사라지도록 수식화하고, 소성경화 계수과 팽창률을 이용하여 소성변형 증분을 정의하였다. 개발된 모델의 응력-변형률 증분식을 제시하고, 쌍곡선 모델에 대한 소성경화 계수를 유도하였다. 삼축압축조건과 얕은기초의 반복하중에 대한 비교해석은 개발된 모델의 안정적인 수렴성, 이론식과의 일치성, 그리고 이력경로을 보여 주었다. 또한, 수정된 쌍곡선함수에 대한 소성경화 계수를 제시하여, 1차원 등가선형모델에 부합하는 모델변수 산정법을 제안하여 지반의 다차원 거동을 모델링할 수 있도록 하였다.

반복법을 이용한 면진적용 원전구조물의 지반-구조물 상호작용 해석 (Soil-Structure Interaction Analysis for Base-Isolated Nuclear Power Plants Using an Iterative Approach)

  • 한승룡;남민준;서춘교;이상훈
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.21-28
    • /
    • 2015
  • The nuclear accident due to the recent earthquake in Japan has triggered awareness of the importance of safety with regard to nuclear power plants (NPPs). An earthquake is one of the most important parameters which governs the safety of NPPs among external events. Application of a base isolation system for NPPs can reduce the risk for earthquakes. At present, a soil-structure interaction (SSI) analysis is essential in the seismic design of NPPs in consideration of the ground structure interaction. In the seismic analysis of the base-isolated NPP, it is restrictive to consider the nonlinear properties of seismic isolation devices due to the linear analysis of the SSI analysis programs, such as SASSI. Thus, in this study, SSI analyses are performed using an iterative approach considering the material nonlinearity of the isolators. By performing the SSI analysis using an iterative approach, the nonlinear properties of isolators can be considered. The difference between the SSI analysis results without iteration and SSI with iteration using SASSI is noticeable. The results of the SSI analysis using an effective linear (non-iterative) approach underestimate the spectral acceleration because the effective linear model cannot consider the nonlinear properties of isolators. The results of the SSI analysis show that the horizontal response of the base-isolated NPP is significantly reduced.

확률론적 하중에 따른 실트질 모래지반 내 지중응력의 변동계수 특성 (The Coefficients of Variation Characteristic of Stress Distribution in Silty Sand by Probabilistic Load)

  • 봉태호;손영환;김성필;허준
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.77-87
    • /
    • 2012
  • Recently, Load and Resistance Factor Design (LRFD) based on reliability analysis has become a global trend for economical and rational design. In order to implement the LRFD, quantification of uncertainty for load and resistance should be done. The reliability of result relies on input variable, and therefore, it is important to obtain exact uncertainty properties of load and resistance. Since soil stress is the main reason causing the settlement or deformation of ground and load on the underground structure, it is essential to clarify the uncertainty of soil stress distribution for accurately predict the uncertainty of load in LRFD. In this study, laboratory model test on silty sand bed under probabilistic load is performed to observe propagation of upper load uncertainty. The results show that the coefficient of variation (COV) of soil stress are varied depending on location due to non-linear relationship between upper load increment and soil pressure increment. In addition, when the load uncertainty is transmitted through ground, COV is decreased by damping effect.

임펄스전압에 의한 동심원통형 전극계에서 토양 이온화특성 분석 (Analysis of Soil lonization Characteristics in Concentric Cylindrical Electrode System under Impulse Voltages)

  • 김회구;박건훈;이복희
    • 조명전기설비학회논문지
    • /
    • 제22권9호
    • /
    • pp.32-39
    • /
    • 2008
  • 본 논문은 뇌임펄스전압에 의한 토양의 이온화 현상과 모델접지시스템의 과도적 특성에 관련된 파라미터에 관한 것으로 건조 모래와 습한 모래에 대한 이온화 특성을 치수가 다른 동심원통형 전극계의 실험 용기를 이용하여 연구하였다. 결과로써, 높은 임펄스전압이 인가된 모래의 비선형 전기적 특성은 이온화 과정에 의해 발생하였다. 모래의 과도임피던스는 수분의 함유량과 인가임펄스전압의 크기에 의존하며, 수분의 함유량과 인가전압의 크기의 증가에 따라 접지임피던스는 감소하였다. 본 연구결과는 뇌서지에 대하여 우수한 성능을 가지는 접지시스템의 설계에 유용한 정보가 될 것이다

Investigation of seismic response of long-span bridges under spatially varying ground motions

  • Aziz Hosseinnezhad;Amin Gholizad
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.401-416
    • /
    • 2024
  • Long-span structures, such as bridges, can experience different seismic excitations at the supports due to spatially variability of ground motion. Regarding current bridge designing codes, it is just EC 2008 that suggested some regulations to consider it and in the other codes almost ignored while based on some previous studies it is found that the effect of mentioned issue could not be neglected. The current study aimed to perform a comprehensive study about the effect of spatially varying ground motions on the dynamic response of a reinforced concrete bridge under asynchronous input motions considering soil-structure interactions. The correlated ground motions were generated by an introduced method that contains all spatially varying components, and imposed on the supports of the finite element model under different load scenarios. Then the obtained results from uniform and non-uniform excitations were compared to each other. In addition, the effect of soil-structure interactions involved and the corresponding results compared to the previous results. Also, to better understand the seismic response of the bridge, the responses caused by pseudo-static components decompose from the total response. Finally, an incremental dynamic analysis was performed to survey the non-linear behavior of the bridge under assumed load scenarios. The outcomes revealed that the local site condition plays an important role and strongly amplifies the responses. Furthermore, it was found that a combination of wave-passage and strong incoherency severely affected the responses of the structure. Moreover, it has been found that the pseudo-static component's contribution increase with increasing incoherent parameters. In addition, regarding the soil condition was considered for the studied bridge, it was found that a combination of spatially varying ground motions and soil-structure interactions effects could make a very destructive scenarios like, pounding and unseating.