• 제목/요약/키워드: Non-linear resin behavior

검색결과 6건 처리시간 0.028초

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

FRP 복합재료의 온도변화 및 제작인자별 비선형 전단거동 조사 (An Investigation on the Nonlinear Shear Behavior of FRP Composites Considering Temperature Variation and Fabricating Parameters)

  • 정우영;황진섭
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.833-841
    • /
    • 2013
  • 복합재료의 경우 다양한 재료에 따라 제작이 가능하며 이들 완성재료의 경우 다양한 재료특성을 나타낸다. 이 연구는 건설용 FRP복합재료의 재료특성 중 선형거동이 뚜렷이 나타나는 인장, 압축과는 달리 비선형 거동이 발생되는 전단거동 특성에 대한 실험적 연구로서 ASTM D4255 규정에 의한 2-Rail 전단시험 방법을 토대로 각각의 시편들을 제작, 실험결과를 분석하였다. 고려된 실험변수로는 함침 수지류의 종류와 섬유 체적비, 섬유배열 방향 및 온도 특성, 공장용 생산제품의 균질성 등을 고려하였다. 섬유배열 방향에 따른 특성조사의 경우 섬유 배열방향을 $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$로 각각 시편을 제작하였으며, 온도에 따른 외부환경 변화에 의한 FRP재료의 전단거동을 조사하기 위하여 실험온도를 $25^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$로 각각 고려하여 시험을 수행하였다. 이 연구를 통하여 대부분의 복합재료 시편에서 비선형 전단거동이 확인되었으며 비닐에스테르수지를 사용하고, 높은 섬유체적비와 $45^{\circ}$의 섬유배열방향을 가진 시편에서 비선형 전단거동이 가장 두드러지게 나타나는 것으로 조사되었다. 온도변화에 따른 실험결과의 경우, 온도가 증가함에 따라 전단 내 비선형 거동의 감소가 나타났으며 공장용 제작제품의 경우 hand lay-up 제작시편에 비하여 비선형 전단거동이 비교적 동등하게 나타냈다.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

차체 구조용 섬유직물 복합재의 평면 전단(mode II) 층간분리 거동에 대한 시험적 연구 (A Study on Sliding Shear(Mode II) Delamination of Woven Fabric composites for Carbody Structure)

  • 김승철;김정석;윤혁진;서승일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.557-563
    • /
    • 2010
  • Mode II interlaminar fracture toughness was measured and fractured surfaces were observed of carbon/epoxy and glass/epoxy woven fabric composites for carbody structure. Woven fabric carbon/epoxy and glass/epoxy composites that made with prepreg and epoxy resin(RS1222) are used in carbody structure of Korean tilting train(TTX) and low floor bus. ENF(End Notched Flexure) specimens having $120mm{\times}20m{\times}5mm$ shape and 35mm initial crack were made with each composites and three point bending tests according to ASTM D790 were conducted for these specimens. Crack lengths in tests were recorded using optical microscope and digital camcorder. NL(Non Linear), 5% offset and Max. load points in load -displacement curves were checked and mode II interlaminar fracture toughness of these points were calculated and compared. Fractured surfaces of specimens were observed using optical microscope and mode II delamination behavior of each composites was discussed.

  • PDF

A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors

  • Bilmez, Bayram;Toker, Ozan;Alp, Selcuk;Oz, Ersoy;Icelli, Orhan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.310-317
    • /
    • 2022
  • The mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/antimony in the 0.05 MeV-2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient.