• 제목/요약/키워드: Non-linear regression model

검색결과 275건 처리시간 0.033초

기계학습을 이용한 유동가속부식 모델링: 랜덤 포레스트와 비선형 회귀분석과의 비교 (Modeling of Flow-Accelerated Corrosion using Machine Learning: Comparison between Random Forest and Non-linear Regression)

  • 이경근;이은희;김성우;김경모;김동진
    • Corrosion Science and Technology
    • /
    • 제18권2호
    • /
    • pp.61-71
    • /
    • 2019
  • Flow-Accelerated Corrosion (FAC) is a phenomenon in which a protective coating on a metal surface is dissolved by a flow of fluid in a metal pipe, leading to continuous wall-thinning. Recently, many countries have developed computer codes to manage FAC in power plants, and the FAC prediction model in these computer codes plays an important role in predictive performance. Herein, the FAC prediction model was developed by applying a machine learning method and the conventional nonlinear regression method. The random forest, a widely used machine learning technique in predictive modeling led to easy calculation of FAC tendency for five input variables: flow rate, temperature, pH, Cr content, and dissolved oxygen concentration. However, the model showed significant errors in some input conditions, and it was difficult to obtain proper regression results without using additional data points. In contrast, nonlinear regression analysis predicted robust estimation even with relatively insufficient data by assuming an empirical equation and the model showed better predictive power when the interaction between DO and pH was considered. The comparative analysis of this study is believed to provide important insights for developing a more sophisticated FAC prediction model.

가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석 (Applications of Gaussian Process Regression to Groundwater Quality Data)

  • 구민호;박은규;정진아;이헌민;김효건;권미진;김용성;남성우;고준영;최정훈;김덕근;조시범
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.67-79
    • /
    • 2016
  • Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.

Potential of near infrared spectroscopy for non-destructive estimation of soluble solids in growing melons

  • Ito, Hidekazu;Morimoto, Susumu;Yamauchi, Ryougo
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1525-1525
    • /
    • 2001
  • Non-destructive determination of soluble solids(Brix) in harvested fruits using near infrared(hereafter, NIR) spectroscopy has been reported by many researchers. We have just reported on non-destructive estimation of Brix in harvested melons using a NIR Systems Model 6500 spectrophotometer(Ito et al., 2000). There is a melon cultivar that is difficult to judge the harvest time from the external appearance. If we can determine Brix in growing fruits non-destructively in the field, immature fruits will not be harvested. A portable m spectrophotometer for field use has been just developed by Kubota Corporation. The spectral data of growing melons were measured by the portable spectrophotometer. A commercial program was used for multiple linear regression analysis. Brix in growing melons could be estimated by a multiple regression equation calibrated with harvested melons. Absorbances of 906 and 874 nm were included as the independent variables in the multiple regression equation, and these wavelengths are key wavelengths for non-destructive Brix determination.

  • PDF

문헌 단위 인용 네트워크 내 인용과 중심성 지수 간 관계 추정에 관한 연구 (Curve Estimation among Citation and Centrality Measures in Article-level Citation Networks)

  • 유소영
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.193-204
    • /
    • 2012
  • 이 연구에서는 인용 및 동시인용 문헌 네트워크에서의 중심성 지수를 사용한 추론 통계 적용의 첫 번째 단계로써 이들 간 관계의 선형성을 살펴보고자 하였다. 703개의 문헌 동시인용 네트워크를 활용하여 인용 빈도, 연결정도 중심성, 인접 중심성, 매개 중심성 간의 4가지 주요 관계의 패턴을 살펴본 결과, 모든 인용 및 중심성 간 관계가 선형모델보다는 비선형적 모델로 더 잘 설명될 수 있음을 통계적으로 확인되었다. 따라서 이들 간의 인과관계에 대한 다중회귀분석과 같은 추론 통계 분석의 기반이 되는 선형성을 확보하기 위해서는 논리적인 기준에 근거한 데이터 변환이나 실제값을 구간값으로 변환하는 과정이 필요하다고 할 수 있다.

Prediction of non-exercise activity thermogenesis (NEAT) using multiple linear regression in healthy Korean adults: a preliminary study

  • Jung, Won-Sang;Park, Hun-Young;Kim, Sung-Woo;Kim, Jisu;Hwang, Hyejung;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제25권1호
    • /
    • pp.23-29
    • /
    • 2021
  • [Purpose] This preliminary study aimed to develop a regression model to estimate the non-exercise activity thermogenesis (NEAT) of Korean adults using various easy-to-measure dependent variables. [Methods] NEAT was measured in 71 healthy adults (male n = 29; female n = 42). Statistical analysis was performed to develop a NEAT estimation regression model using the stepwise regression method. [Results] We confirmed that ageA, weightB, heart rate (HR)_averageC, weight × HR_averageD, weight × HR_sumE, systolic blood pressure (SBP) × HR_restF, fat mass ÷ height2G, gender × HR_averageH, and gender × weight × HR_sumI were important variables in various NEAT activity regression models. There was no significant difference between the measured NEAT values obtained using a metabolic gas analyzer and the predicted NEAT. [Conclusion] This preliminary study developed a regression model to estimate the NEAT in healthy Korean adults. The regression model was as follows: sitting = 1.431 - 0.013 × (A) + 0.00014 × (D) - 0.00005 × (F) + 0.006 × (H); leg jiggling = 1.102 - 0.011 × (A) + 0.013 × (B) + 0.005 × (H); standing = 1.713 - 0.013 × (A) + 0.0000017 × (I); 4.5 km/h walking = 0.864 + 0.035 × (B) + 0.0000041 × (E); 6.0 km/h walking = 4.029 - 0.024 × (C) + 0.00071 × (D); climbing up 1 stair = 1.308 - 0.016 × (A) + 0.00035 × (D) - 0.000085 × (F) - 0.098 × (G); and climbing up 2 stairs = 1.442 - 0.023 × (A) - 0.000093 × (F) - 0.121 × (G) + 0.0000624 × (E).

다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구 (Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil)

  • 유건선
    • 한국지반환경공학회 논문집
    • /
    • 제19권12호
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970)는 던컨-창 모델을 제안하면서 흙시료의 초기 접선계수와 극한 축차응력을 구하기 위하여 쌍곡선이론을 사용하여 삼축압축시험의 응력-변형률의 비선형관계를 변환된 변형률/축차응력-변형률의 선형관계로 재구성하였다. 그러나 변환된 응력-변형률 관계는 이론적으로 선형관계를 나타내지만, 실제로는 시험이 시작되는 변형률이 작은 구간과 시료가 파괴에 이르는 변형률이 큰 구간에서는 비선형관계를 보인다. 이러한 현상은 삼축압축시험의 응력-변형률 곡선이 완전한 쌍곡선 형태가 아님을 나타낸다. 따라서 변환된 응력-변형률 곡선의 전 구간에 대하여 선형 회귀분석을 실시하여 직선의 식을 구하게 되면, 비선형관계를 나타내는 구간의 범위에 따라 선형관계식의 산정에 편차가 발생하게 된다. 이러한 편차를 줄이기 위하여 본 연구에서는 변환응력-변형률 관계에서 비선형을 나타내는 초반과 종반 구간을 제외한 구간에 대하여 선형회귀분석을 실시함으로써 초기접선계수와 극한 축차응력을 산정하는 수정회귀분석법을 제안하였다. 수정회귀분석법을 검증하기 위하여, 풍화토의 다짐시료에 대하여 압밀-배수 삼축압축시험을 실시하였다. 삼축압축시험의 응력-변형률 곡선으로부터 구한 변환응력-변형률 관계에 대해서 수정회귀분석을 실시하여 Duncan et al.(1980)이 제안한 2점법으로 구한 결과와 비교하였다. 분석결과 수정회기분석법에 비해 Duncan의 2점법으로 산정한 초기 접선계수는 4.0% 크게, 그리고 극한 축차응력은 2.9% 작게 평가되었다.

일반화 선형모형을 통한 품질개선실험 자료분석 (Generalized Linear Models for the Analysis of Data from the Quality-Improvement Experiments)

  • 이영조;임용빈
    • 품질경영학회지
    • /
    • 제24권2호
    • /
    • pp.128-141
    • /
    • 1996
  • The advent of the quality-improvement movement caused a great expansion in the use of statistically designed experiments in industry. The regression method is often used for the analysis of data from such experiments. However, the data for a quality characterstic often takes the form of counts or the ratio of counts, e.g. fraction of defectives. For such data the analysis using generalized linear models is preferred to that using the simple regression model. In this paper we introduce the generalized linear model and show how it can be used for the analysis of non-normal data from quality-improvement experiments.

  • PDF

연관성 규칙 수의 추정을 위한 일반적인 비선형 회귀모형에서의 표준화 향상도 활용 방안 (Generally non-linear regression model containing standardized lift for association number estimation)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.629-638
    • /
    • 2016
  • 최근에 많이 활용되고 있는 데이터 분석을 위한 연관성 규칙 마이닝은 대용량 데이터베이스에 많이 활용되고 있는 서 두 항목간의 관계를 측도화 함으로써 두 개 이상의 항목간의 관련성을 표시하여 주는 기법이다. 연관성 규칙의 여부를 판단하기 위한 연관성 평가 기준에는 지지도, 신뢰도, 그리고 향상도 등이 있으며, 이들 세 가지 기준을 이용하여 연관성 규칙 생성 여부를 판단하게 된다. 이에 대한 기존의 연구 결과는 결정함수를 이용하는 방법과 회귀모형을 이용하는 방법으로 분류할 수 있다. 회귀모형을 이용하여 수행한 연구에는 지지도와 신뢰도에 의한 모형, 세 가지 평가 기준의 쌍에 의한 모형, 표준화 향상도를 포함한 세 가지 평가 기준의 쌍에 의한 모형, 그리고 세 가지 평가 기준 전부를 고려한 모형 등이 있다. 본 논문에서는 기존의 연구를 확장하는 의미에서 표준화 향상도를 포함한 세가지 평가 기준 전부를 고려한 비선형 회귀모형을 이용하여 연관성 규칙의 수를 추정하는 방안에 대해 강구하고자 한다. 또한 분산분석에서의 F 통계량과 수정 결정계수를 이용하여 각 모형의 유의한 정도를 비교하는 동시에 분산팽창계수에 의한 공선성 문제를 진단함으로써 가장 유용한 회귀 모형을 탐색하고자 한다.

Model for Mobile Online Video viewed on Samsung Galaxy Note 5

  • Pal, Debajyoti;Vanijja, Vajirasak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5392-5418
    • /
    • 2017
  • The primary aim of this paper is to propose a non-linear regression based technique for mapping different network Quality of Service (QoS) factors to an integrated end-user Quality of Experience (QoE) or Mean Opinion Score (MOS) value for an online video streaming service on a mobile phone. We use six network QoS factors for finding out the user QoE. The contribution of this paper is threefold. First, we investigate the impact of the network QoS factors on the perceived video quality. Next, we perform an individual mapping of the significant network QoS parameters obtained in stage 1 to the user QoE based upon a non-linear regression method. The optimal QoS to QoE mapping function is chosen based upon a decision variable. In the final stage, we evaluate the integrated QoE of the system by taking the combined effect of all the QoS factors considered. Extensive subjective tests comprising of over 50 people across a wide variety of video contents encoded with H.265/HEVC and VP9 codec have been conducted in order to gather the actual MOS data for the purpose of QoS to QoE mapping. Our proposed hybrid model has been validated against unseen data and reveals good prediction accuracy.

Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery

  • Kang, Jeong-Gyun;Ryu, Chan-Seok;Kim, Seong-Heon;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong-Hyeon;Kim, Dong Eok;Ku, Yang-Gyu
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.273-280
    • /
    • 2016
  • Purpose: This experiment was conducted to detect water stress in terms of the moisture content of cucumber seedlings under water stress condition using a hyperspectral image acquisition system, linear regression analysis, and partial least square regression (PLSR) to achieve a non-destructive measurement procedure. Methods: Changes in the reflectance spectrum of cucumber seedlings under water stress were measured using hyperspectral imaging techniques. A model for estimating moisture content of cucumber seedlings was constructed through a linear regression analysis that used the moisture content of cucumber seedlings and a normalized difference vegetation index (NDVI). A model using PLSR that used the moisture content of cucumber seedlings and reflectance spectrum was also created. Results: In the early stages of water stress, cucumber seedlings recovered completely when sub-irrigation was applied. However, the seedlings suffering from initial wilting did not recover when more than 42 h passed without irrigation. The reflectance spectrum of seedlings under water stress decreased gradually, but increased when irrigation was provided, except for the seedlings that had permanently wilted. From the results of the linear regression analysis using the NDVI, the model excluding wilted seedlings with less than 20% (n=97) moisture content showed a precision ($R^2$ and $R^2_{\alpha}$) of 0.573 and 0.568, respectively, and accuracy (RE) of 4.138% and 4.138%, which was higher than that for models including all seedlings (n=100). For PLS regression analysis using the reflectance spectrum, both models were found to have strong precision ($R^2$) with a rating of 0.822, but accuracy (RMSE and RE) was higher in the model excluding wilted seedlings as 5.544% and 13.65% respectively. Conclusions: The estimation model of the moisture content of cucumber seedlings showed better results in the PLSR analysis using reflectance spectrum than the linear regression analysis using NDVI.