• Title/Summary/Keyword: Non-linear load

Search Result 636, Processing Time 0.036 seconds

Analysis on the Harmonic Characteristics of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전하는 비선형 부하의 고조파 특성 분석)

  • 김종겸;이은웅;이동주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.491-500
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

Instantaneous Power Compensation of Non-linear Load (비선형 부하의 순시 전력 보상)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Eee, Eun-Woong;Jeong, Jong-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.152-153
    • /
    • 2007
  • industrial site has led to a growing concern for harmonic distortion and the resulting impacts on system equipment and operation. Harmonic current is generated by the operation of non-linear load, it means that voltage and current waveforms exhibit a non-linear relationship. Harmonics cause increase losses in the customer and utility power system components. This paper describes application of instantaneous active and reactive theory for the compensation of harmonic currents in three-phase non-linear load.

  • PDF

Stability of unbraced frames under non-proportional loading

  • Xu, L.;Liu, Y.;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • This paper discusses the elastic stability of unbraced frames under non-proportional loading based on the concept of storey-based buckling. Unlike the case of proportional loading, in which the load pattern is predefined, load patterns for non-proportional loading are unknown, and there may be various load patterns that will correspond to different critical buckling loads of the frame. The problem of determining elastic critical loads of unbraced frames under non-proportional loading is expressed as the minimization and maximization problem with subject to stability constraints and is solved by a linear programming method. The minimum and maximum loads represent the lower and upper bounds of critical loads for unbraced frames and provide realistic estimation of stability capacities of the frame under extreme load cases. The proposed approach of evaluating the stability of unbraced frames under non-proportional loading has taken into account the variability of magnitudes and patterns of loads, therefore, it is recommended for the design practice.

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams

  • Mohri, F.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.401-415
    • /
    • 2006
  • Based on a non-linear model taking into account flexural-torsional couplings, analytical solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A closed form is established for lateral buckling moments. It accounts for bending distribution, load height application and pre-buckling deflections. Coefficients $C_1$ and $C_2$ affected to these parameters are then derived. Regard to well known linear stability solutions, these coefficients are not constant but depend on another coefficient $k_1$ that represents the pre-buckling deflection effects. In numerical simulations, shell elements are used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for which the behaviour is predominated by pre-buckling deflection and the coefficient $k_1$ is large. The proposed solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths.

A New Load Aggregation Method in Consideration of Non-linear Load (비선형 부하를 고려한 새로운 부하합성 기법)

  • Lee, Jong-Pil;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.168-173
    • /
    • 2012
  • The aggregation of group loads, which consists of the linear and the non-linear systems, yields the error involved in the reactive power aggregation, which is greater than the active power aggregation in the component based load modeling. Each individual reactive power in a group load affects the aggregated load different from composition rate. This paper proposes a new method that determines the degree of impacts by adjusting the coefficient of weight factors of each load using the least squares error method. The effectiveness of proposed algorithm is demonstrated by simulating three aggregation cases.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Static Loads (등가정하중을 이용한 비선형 거동 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.999-1004
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

  • PDF

Analysis and Measurement of Current Harmonics Due to Non-linear Load in Low Voltage System (저압 시스템에서 비선형 부하의 사용에 따른 전류 고조파 해석 및 측정)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.601-608
    • /
    • 2001
  • The ever increasing density of adjustable speed drives(ASD) device with non-linear operating characteristics has been to put tremendous harmonic stress on end user's electrical application. All ASD controllers which employ solid state power devices cause harmonic currents in the source side line. This paper describes harmonic problems for use of ASD. In order to investigate the effect of harmonics caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current waveforms. Measurement results show that additional operation of linear load at the parallel bus with nonlinear load such as ASD is helpful to the reduction of harmonic influence.

  • PDF