• 제목/요약/키워드: Non-linear dynamics

Search Result 259, Processing Time 0.022 seconds

Analytical Surge Behaviors in Systems of a Single-stage Axial Flow Compressor and Flow-paths

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Behaviors of surges appearing near the stall stagnation boundaries in various fashions in systems of a single-stage compressor and flow-path systems were studied analytically and were tried to put to order. Deep surges, which enclose the stall point in the pressure-mass flow plane, tend to have either near-resonant surge frequencies or subharmonic ones. The subharmonic surge is a multiple-loop one containing, for example, in a (1/2) subharmonic one, a deep surge loop and a mild surge loop, the latter of which does not enclose the stall point, staying only within the stalled zone. Both loops have nearly equal time periods, respectively, resulting in a (1/2) subharmonic surge frequency as a whole. The subharmonic surges are found to appear in a narrow zone neighboring the stall stagnation boundary. In other words, they tend to appear in the final stage of the stall stagnation process. It should be emphasized further that the stall stagnation initiates fundamentally at the situation where a volume-modified reduced resonant-surge frequency becomes coincident with that for the stagnation boundary conditions, where the reduced frequency is defined by the acoustical resonance frequency in the flow-path system, the delivery flow-path length and the compressor tip speed, modified by the sectional area ratio and the effect of the stalling pressure ratio. The real surge frequency turns from the resonant frequency to either near-resonant one or subharmonic one, and finally to stagnation condition, for the large-amplitude conditions, caused by the non-linear self-excitation mechanism of the surge.

Free Vibration Analysis of Circular Strip Foundations (원호형 띠기초의 자유진동 해석)

  • Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF

Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method (입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.

Numerical Simulation of Tsunami Impact Load Using 3-Dimensional Particle Method (파랑 충격하중에 관한 3차원 입자법 수치모사)

  • Kim, Young-Hun;Jung, Sung-Jun;Lee, Byung-Hyuk;Hwang, Sung-Chul;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.42-46
    • /
    • 2007
  • The impact of a single wave generated by a dam break with a tall structure is modeled with a three-dimensional version of the Moving particle semi-implicit (MPS) method. The particle method is more feasible and effective than methods based on grid connection problems involving violent free surface motions. In the present study, the Tsunami impact load and the change of longitudinal velocity component around the structure, which are obtained from the numerical simulation, are compared to those from experiments.

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF

Dynamic analysis of a functionally graded tapered rotating shaft under thermal load via differential quadrature finite elements method

  • Fethi, Hadjoui;Ahmed, Saimi;Ismail, Bensaid;Abdelhamid, Hadjoui
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.19-49
    • /
    • 2023
  • The present study proposes a theoretical and numerical investigation on the dynamic response behaviour of a functional graded (FG) ceramic-metal tapered rotor shaft system, by the differential quadrature finite elements method (DQFEM) to identify the natural frequencies for modelling and analysis of the structure with suitable validations. The purpose of this paper is to explore the influence of heat gradients on the natural frequency of rotation of FG shafts via three-dimensional solid elements, as well as a theoretical examination using the Timoshenko beam mode, which took into account the gyroscopic effect and rotational inertia. The functionally graded material's distribution is described by two distribution laws: the power law and the exponential law. To simulate varied thermal conditions, radial temperature distributions are obtained using the nonlinear temperature distribution (NLTD) and exponential temperature distribution (ETD) approaches. This work deals with the results of the effect on the fundamental frequencies of different material's laws gradation and temperature gradients distributions. Attempts are conducted to identify adequate explanations for the behaviours based on material characteristics. The effect of taper angle and material distribution on the dynamic behaviour of the FG conical rotor system is discussed.

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

Spatio-temporal variabilities of nutrients and chlorophyll, and the trophic state index deviations on the relation of nutrients-chlorophyll-light availability

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2016
  • The object of this study was to determine long-term temporal and spatial patterns of nutrients (nitrogen and phosphorus), suspended solids, and chlorophyll (Chl) in Chungju Reservoir, based on the dataset of 1992 - 2013, and then to develop the empirical models of nutrient-Chl for predicting the eutrophication of the reservoir. Concentrations of total nitrogen (TN) and total phosphorus (TP) were largely affected by an intensity of Asian monsoon and the longitudinal structure of riverine (Rz), transition (Tz), and lacustrine zone (Lz). This system was nitrogen-rich system and phosphorus contents in the water were relatively low, implying a P-limiting system. Regression analysis for empirical model, however, showed that Chl had a weak linear relation with TP or TN, and this was mainly associated with turbid, and nutrient-rich inflows in the system. The weak relation was associated with non-algal light attenuation coefficients (Kna), which is inversely related water residence time. Thus, values of Chl had negative functional relation (R2 = 0.25, p < 0.001) with nonalgal light attenuation. Thus, the low chlorophyll at a given TP indicated a light-limiting for phytoplankton growth and total suspended solids (TSS) was highly correlated (R2 = 0.94, p < 0.001) with non-algal light attenuation. The relations of Trophic State Index (TSI) indicated that phosphorus limitation was weak [TSI (Chl) - TSI (TP) < 0; TSI (SD) - TSI (Chl) > 0] and the effects of zooplankton grazing were also minor [TSI (Chl) - TSI (TP) > 0; TSI (SD) - TSI (Chl) > 0].

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF