• Title/Summary/Keyword: Non-linear Vibration

Search Result 404, Processing Time 0.029 seconds

Boundary Control of a Tensioned Elastic Axially Moving String

  • Kim, Chang-Won;Hong, Keum-Shik;Park, Hahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2260-2265
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. A time varying control in the form of right boundary transverse motions is proposed in stabilizing the transverse vibrations of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the closed-loop system is verified. The effectiveness of the proposed controller is shown through simulations.

  • PDF

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.

A study of diamond wire rock cutting process analysis by FEM

  • Kabir, Mohammed Ruhul;Sagong, Myung;Ahn, Sung-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2015
  • In this paper diamond wire cutting method has been proposed to cut the rock in the tunnel face. Diamond wire saw method could cut the rock from tunnel face with very minor vibration and noise. In this study rock cutting process has been simulated with FEM method by using LS-DYNA explicit non-linear finite element code. Normal load act as an prime factor when cutting the rock surface. For observing the effect of normal load on bead, several experiments has been conducted by varying normal loads on the bead. From each experiment, cutting rate has been calculated to compare the cutting rate with different load conditions. By increasing the normal load on bead, cutting rate increases drastically.

Characteristic Prediction and Evaluation of Rubber Components for Railway Vehicle (철도차량용 방진고무부품 특성예측 및 평가)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.83-89
    • /
    • 2005
  • Rubber spring is used in primary suspension system for railway vehicle. This rubber spring has function which reduce vibration and noise, support the load carried in operation of rail vehicle. The non-linear properties of rubber which are described as strain energy function are important parameter to design and evaluate of rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of load-displacement of rubber spring for rail vehicle are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results

  • PDF

Manufacturing and Performance Test for Bogie System of Urban Maglev (도시형 자기부상열차의 주행장치시스템 제작 및 성능 시험)

  • Yu, Young-Don;Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.590-596
    • /
    • 2010
  • Maglev vehicles levitated and propelled by electromagnet as non-contact between vehicle and guide rail is environmentally friendly transport system which have many advantages like ride comfort and guide way construction costs. As a goal of commercial operation at Incheon International Airport in 2012, development of vehicle is underway and proto-vehicle is test running at KIMM. The maglev bogie system of proto-vehicle, like railway vehicle, has functions to support weight of vehicle, transfer force of brake and propulsion and improve ride comfort through insulation of vibration and improve curve negotiation capability. The main components of a bogie are two modules consisted of electromagnetic, frame and linear motor, two tie beams to connect two modules and steering system to improve curve negotiation capability. The purpose of this paper is to describe general specification, structure, manufacturing process, performance testing, ride comfort of proto-vehicle and bogie system.

  • PDF

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System (초전도 자기베어링-플라이휠 시스템의 베어링 모델링)

  • 김정근;이수훈
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.