• Title/Summary/Keyword: Non-linear Equation

Search Result 591, Processing Time 0.023 seconds

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.

REMARKS ON A PAPER OF LEE AND LIM

  • Hamedani, G.G.;Slattery, M.C.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.475-477
    • /
    • 2014
  • Lee and Lim (2009) state three characterizations of Loamax, exponential and power function distributions, the proofs of which, are based on the solutions of certain second order non-linear differential equations. For these characterizations, they make the following statement : "Therefore there exists a unique solution of the differential equation that satisfies the given initial conditions". Although the general solution of their first differential equation is easily obtainable, they do not obtain the general solutions of the other two differential equations to ensure their claim via initial conditions. In this very short report, we present the general solutions of these equations and show that the particular solutions satisfying the initial conditions are uniquely determined to be Lomax, exponential and power function distributions respectively.

The Analysis of Groundwater Hydrograph According to the Variation of Hydrologic Physical Characteristics (수문학적 물리적 특성치의 변화에 따른 지하수 수문곡선 분석)

  • 김재한
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.123-137
    • /
    • 1987
  • The groundwater hydrographs due to the recharge of water table aquifer resulting from rainfall are simulated by relating the existing linearized method, which is originally the non-linear equation suggested by Boussinesq, to the basin charcteristics. To thes end, the recharge curve is assumed as the skewed distribution of sine curve, and the parameters contained in the equation are determined from the geomorphologic and soil maps. The whole drainage area is divied in order to consider the spatial variation of parameters. The obtained parameters are tried for several cases with different values given arbitrarily to study the aspects of hydrographs according to their variation. This procedures are applied to the natural basin of Bocheong watershed(area:475.5$\textrm{km}^2$) in Korea. As a result, it is shown that considerable uncertainty is expressed for the results obtained with the given values of parameters. Thus, such uncertainty should be precluded to a certain extent by examining and observing the physical characteristics as much as possible for the determination of groundwater flows.

  • PDF

AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH EQUATIONS

  • Jun, Young-Bae;Hwang, Hong-Taek
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • In this paper, we propose a second-order prediction/correction (SPC) domain decomposition method for solving one dimensional linear hyperbolic partial differential equation $u_{tt}+a(x,t)u_t+b(x,t)u=c(x,t)u_{xx}+{\int}(x,t)$. The method can be applied to variable coefficients problems and singular problems. Unconditional stability and error analysis of the method have been carried out. Numerical results support stability and efficiency of the method.

Phase Transitions and Phase Diagram of the Island Model with Migration

  • Park, Jeong-Man
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1219-1224
    • /
    • 2018
  • We investigate the evolutionary dynamics and the phase transitions of the island model which consists of subdivided populations of individuals confined to two islands. In the island model, the population is subdivided so that migration acts to determine the evolutionary dynamics along with selection and genetic drift. The individuals are assumed to be haploid and to be one of two species, X or Y. They reproduce according to their fitness values, die at random, and migrate between the islands. The evolutionary dynamics of an individual based model is formulated in terms of a master equation and is approximated by using the diffusion method as the multidimensional Fokker-Planck equation (FPE) and the coupled non-linear stochastic differential equations (SDEs) with multiplicative noise. We analyze the infinite population limit to find the phase transitions from the monomorphic state of one type to the polymorphic state to the monomorphic state of the other type as we vary the ratio of the fitness values in two islands and complete the phase diagram of our island model.

Retention Behavior of Transition Metal ions with Some Complexing Agents on Cation Exchanger

  • Park, Yang-Soon;Joe, Kih-Soo;Lee, Gae-Ho;Han, Sun-Ho;Eom, Tae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.692-696
    • /
    • 1993
  • Prediction of retention times in transition metal-mandelate and transition metal-tartrate complex systems were studied on the cation exchanger. Plots of k' vs [mandelate] and k' vs [tartrate] were obtained under the condition of a constant competing cation concentration. The equation to predict the retention time of transition metal ion was derived from the ion exchange equilibria. Individual capacity factors (${k_1}',\;{k_2}'$) and stability constants ($K_1,\;K_2$) of the complexes were calculated from the non-linear least square method. Good resolution of the transition metals was predicted by the stepwise equation in the gradient method. The values of retention times from the calculation and the experiment agreed well each other.

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.

CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre (CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측)

  • Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

Simulation of acoustic waves horizontal refraction using a three-dimensional parabolic equation model (3차원 포물선방정식을 이용한 음파의 수평굴절 모의)

  • Na, Youngnam;Son, Su-Uk;Hahn, Jooyoung;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.131-142
    • /
    • 2022
  • In order to examine the possibility of horizontal simulations of acoustic waves on the environments of big water depth variations, this study introduces a 3-dimensional model based on the pababolic equation. The model gives approximated solutions by separating the cross- and non cross-terms in the equation. Assuming artificial bathymetry (25 km × 4 km) with a source frequency 75 Hz, the simulations give clear horizontal refractions on the transmission loss distributions. The degree of refractions shows non-linear increase along the propagating range and proportional increase with water depth along the cross range. Another simulations with the real bathymetry (25 km × 8 km) also give clear horizontal refractions. The horizontal distributions present little difference with the depth resolution variations of the same data source because the model gives interpolations over the depth data before simulations. Meanwhile, the horizontal distributions show big difference with those of different data sources.

Integrated Water Distribution Network System using the Mathematical Analysis Model and GIS (수리해석 모형과 GIS를 이용한 통합 용수배분 시스템)

  • Kwon, Jae-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • In this study, GNLP(GIS linked non-linear network analysis program) for pipeline system analysis has been developed. This GNLP gets the input data for pipeline analysis from existing GIS(geographic information system) data automatically, and has GUI(graphic user interface) for user. Non-Linear Method was used for hydraulic analysis of pipe network based on Hazen-Williams equation, and Microsoft Access of relational database management system(RDBMS) was used for the framework of database applied program. GNLP system environment program was improved so that a pipe network designer can input information data for hydraulic analysis of pipeline system more easily than that of existing models. Furthermore this model generate output such as pressure and water quantities in the form of a table and a chart, and also produces output data in Excel file. This model is also able to display data effectively for analysed data confirmation and query function which is the core of GIS program.

  • PDF