• 제목/요약/키워드: Non-linear Data

검색결과 1,276건 처리시간 0.023초

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

초고속 위성통신 시스템의 군 지연 및 비 선형 특성에 대한 영향 분석 (Performance Analysis for Group Delay and Non-linear Characteristics in High Speed Data Satellite Communication System)

  • 김영완;송윤정;김내수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(1)
    • /
    • pp.113-116
    • /
    • 2000
  • The effect due to group delay and non linear characteristics in high speed data satellite channel was represented in this paper. Based on the modeling of group delay and non linear characteristics the performance was analyzed in ka band satellite channel. The group delay and non-linear characteristics in high speed data transmission severely affect the system performance. The more Eb/No is required to satisfy the required system performance. The optimum operating points of HDR satellite transmission system are implemented by considering analyzed results for channel characteristics

  • PDF

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

계층 구조 클러스터링 알고리즘 설계 및 그 응용 (Design of Hierarchically Structured Clustering Algorithm and its Application)

  • 방영근;박하용;이철희
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Non-Linear Error Identifier Algorithm for Configuring Mobile Sensor Robot

  • Rajaram., P;Prakasam., P
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1201-1211
    • /
    • 2015
  • WSN acts as an effective tool for tracking the large scale environments. In such environment, the battery life of the sensor networks is limited due to collection of the data, usage of sensing, computation and communication. To resolve this, a mobile robot is presented to identify the data present in the partitioned sensor networks and passed onto the sink. In novel data collection algorithm, the performance of the data collecting operation is reduced because mobile robot can be used only within the limited range. To enhance the data collection in a changing environment, Non Linear Error Identifier (NLEI) algorithm has been developed and presented in this paper to configure the robot by means of error models which are non-linear. Experimental evaluation has been conducted to estimate the performance of the proposed NLEI and it has been observed that the proposed NLEI algorithm increases the error correction rate upto 42% and efficiency upto 60%.

A Non-Linear Exponential(NLINEX) Loss Function in Bayesian Analysis

  • Islam, A.F.M.Saiful;Roy, M.K.;Ali, M.Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.899-910
    • /
    • 2004
  • In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.

  • PDF

공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관 (Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes)

  • 박진철
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.353-360
    • /
    • 2015
  • 공간적으로 관측되는 연속형 자료를 분석하는 모형으로 공간적 상관관계를 고려한 다양한 정규모형이 지난 수십 년간 제안되었다. 그 중에서 공간효과를 랜덤효과로 모형화하는 공간선형모형(Spatial Linear Mixed Model; SLMM)이 가장 널리 활용되는 모형 중 하나일 것이다. 연결함수(link function)을 사용하면 SLMM을 비정규 데이터도 적용할 수 있는 일반화된 공간선형모형(Spatial Generalized Linear Mixed Model; SGLMM)으로 자연스럽게 확장할 수 있다. 이 논문에서는 가장 널리 활용되는 SGLMM을 알아보고 실제 데이터 적용사례를 R 패키지를 활용하여 제시하고자 한다.

오래달리기 시 시간 경과에 따른 지면 반력 성분의 Variability (Variability of GRF Components between Increased Running Times during Prolonged Run)

  • 류지선
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.359-365
    • /
    • 2014
  • A study was conducted to investigate the possible effects of fatigue which was resulted from increased running time on the stability during a prolonged run. The purposes of this study were twofold: first, to determine the discrete and non-linear variability of GRF (ground reaction force) components between running times to know the body stability, and second, to determine the pattern between discrete and non-linear variability. Nineteens healthy young adult males served in this study as subjects who ran at their preferred running speed. GRF data for twenty strides were collected at 5, 65, and 125 minutes during run. Variance coefficient and Lyapunov Exponent techniques on the GRF data were used to calculate variability index for each of the running time conditions. There were no difference between discrete variabilities of three components of GRF, but non-linear variability of the Fz component of GRF was decreased by increasing running time (p<.01). No relationship was found between discrete and non-linear variability.

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.