• Title/Summary/Keyword: Non-linear Coupling

Search Result 82, Processing Time 0.04 seconds

One to one Resonance on the Rectangular Cantilever Beam (사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Lee, Heung-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.424-429
    • /
    • 2005
  • In this paper, the response characteristics of one to one resonance on the rectangular cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one to one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of nonlinearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Dynamic behaviors in the out of plane are also studied.

  • PDF

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Output Consensus of Non-identical and Stabilizable Linear Systems Having the Same Transfer Matrix (동일한 전달 행렬을 가지는 안정화 가능한 이종 시스템들의 출력 일치)

  • Kim, Ji-Su;Kim, Hong-Keun;Shim, Hyung-Bo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.857-862
    • /
    • 2011
  • This paper studies the output consensus problem for a class of heterogeneous linear multi-agent systems under a fixed directed communication network. The dynamics, as well as its dimension, of each agent can widely differ from the others, but all the agents are assumed to have the same transfer matrix. In addition, only the system outputs are constrained to be delivered through the network. Under these conditions, we show that the output consensus is reached by a group of identical controllers, which is designed to achieve the state consensus for the homogeneous multi-agent system obtained from the minimal realization of the transfer matrix. Finally, an example is given to demonstrate the proposed result.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.439-443
    • /
    • 2011
  • Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.