• Title/Summary/Keyword: Non-linear Control

Search Result 901, Processing Time 0.032 seconds

Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load (불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법)

  • Lee, Wujong;Jo, Jongmin;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

Design of Rotary Inverted Pendulum applying an Embedded System and Implementation by PID (Embeded system을 적용한 Rotary Inverted Pendulum 설계 및 PID에 의한 구현)

  • 김영춘;김정훈;김영탁;김동한
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.5-8
    • /
    • 2002
  • In this paper, we applied a PC interface and an embedded system in order to design a non-linear system and implement the PID algorithm as our control one. We used the inverted pendulum, one of the most generally used non-linear system models, to control uncertain factors in the environment. This paper showed how to use this non-linear system model to control the factors completely as well as to understand the PID algorithm. Furthermore, this paper applied and understood the embedded system.

  • PDF

The Posture Control of One-wheel Unicyle Robot Using Partial Feedback Linearization (부분 피드백 선형화를 이용한 One-wheel Unicycle Robot의 자세 제어)

  • Kim, Jin-Seok;Cho, Young-Jin;Kim, Young-Tark
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.68-75
    • /
    • 2007
  • In this study, the ultimate goal is to acquire stability when turning around efficiently by using the controller which is applied partial feedback linearization of One-wheel Unicycle Robot. When moving around, linear controller could result in unstable factor according to widening operation range. So in order to reduce instability, 1 have developed Non-linear Controller using Partial Feedback Linearization. Compared with linear controller, Non-linear Controller guarantees the superiority of Regulating Control and Tracking Control in direct and also revolution motion of Robot. I'm sure of the Non-linear controller performance through many experiments.

Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

Comparison of Force Control Characteristics Between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (I): Tracking Performance (양로드형과 편로드형 EHA의 힘 제어 특성 비교(I): 추종 성능)

  • Kim, Jong Hyeok;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.9-16
    • /
    • 2017
  • In this study, the force tracking performance of the single-rod and double-rod type EHAs (Electro-Hydrostatic Actuators) was compared by computer simulation and experiments. The force-controlled EHAs exhibit non-linear behavior that are significantly dependent on operation conditions. The investigation focused on localizing the parameters that provide significant rise to the non-linearity. For this, the single-rod and double-rod type EHAs were mathematically expressed to derive their linear models. In parallel, they were modeled by a commercial simulation program including non-linear properties based on experimental results. It was shown that the dependency of the bulk modulus of oil with entrapped air on working pressure dominated the non-linearity in force control performance in case of the double-rod type EHA. The force control of the single-rod type EHA was influenced by much more elements. Besides the asymmetrical piston geometry and the non-linear bulk modulus of oil, its pilot-operated check valves made it dependent not only on the magnitude of reference input but also on its direction.

A NUMERICAL SCHEME TO SOLVE NONLINEAR BSDES WITH LIPSCHITZ AND NON-LIPSCHITZ COEFFICIENTS

  • FARD OMID S.;KAMYAD ALl V.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.73-93
    • /
    • 2005
  • In this paper, we attempt to present a new numerical approach to solve non-linear backward stochastic differential equations. First, we present some definitions and theorems to obtain the conditions, from which we can approximate the non-linear term of the backward stochastic differential equation (BSDE) and we get a continuous piecewise linear BSDE correspond with the original BSDE. We use the relationship between backward stochastic differential equations and stochastic controls by interpreting BSDEs as some stochastic optimal control problems, to solve the approximated BSDE and we prove that the approximated solution converges to the exact solution of the original non-linear BSDE in two different cases.

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Design for CMAC Neural Network Speed Controller of DC Motor by Digital Simulations (디지털 시뮬레이션에 의한 CMAC 신경망 직류전동기 속도 제어기 설계)

  • 최광호;조용범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • In this paper, we propose a CMAC(Cerebellar Model Articulation Controller) neural network for controlling a non-linear system. CMAC is a neural network that models the human cerebellum. CMAC uses a table look-up method to resolve the complex non-linear system instead of numerical calculation method. It is very fast learn compared with other neural networks. It does not need a calculation time to generate control signals. The simulation results show that the proposed CMAC controllers for a simple non-linear function and a DC Motor speed control reduce tracking errors and improve the stability of its learning controllers. The validity of the proposed CMAC controller is also proved by the real-time tension control.

  • PDF

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Approximate Probability Density for the Controlled Responses of Randomly Excited Saturated Oscillator (불규칙 가진을 받는 포화 진동계의 응답제어에 관한 확률밀도 추정)

  • 박지훈;김홍진;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.301-309
    • /
    • 2003
  • The non linear control algorithm with actuator saturation for a randomly excited oscillator has been widely explored and has shown promising results, but the probabilistic analysis of the algorithm has been rarely made due to its non-linear nature and the fact that the analytical solution of probability density function (PDF) for controlled responses does not exist. In this paper, a method for the probabilistic analysis on the non linear control algorithm with actuator saturation is proposed based on the equivalent non linear system method. Numerical examples are given to verify the approximation solution of PDF comparing to a statistically obtained PDF using a Gaussian white noise and a Kanai - Tagimi filtered Gaussian white noise.