• Title/Summary/Keyword: Non-line-of-sight (NLOS)

검색결과 76건 처리시간 0.026초

Threshold Setting for LOS/NLOS Identification Based on Joint TOA and RSS

  • Guan, XuFeng;Hur, SooJung;Park, Yongwan
    • 대한임베디드공학회논문지
    • /
    • 제5권3호
    • /
    • pp.152-156
    • /
    • 2010
  • Non-line-of-sight (NLOS) propagation is one of the challenges in radio positioning. Distinguishing the transmission status of the communication as line-of-sight (LOS) or NLOS is of great importance for the wireless communication systems. This paper focuses on the identification of NLOS based on time-of-arrival (TOA) distance estimates and the received signal strength (RSS) measurements. We set a path loss threshold based on the joint TOA and RSS based NLOS detection method to determine LOS or NLOS. Simulation results show that the proposed method ensures the correct of detection for the LOS condition and can improve the NLOS identification for the weak noise and long distance.

Analysis of TDOA and TDOA/SS Based Geolocation Techniques in a Non-Line-of-Sight Environment

  • Huang, Jiyan;Wan, Qun
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.533-539
    • /
    • 2012
  • The performance analysis of wireless geolocation in a non-line-of-sight (NLOS) environment is a very important issue. Since Cramer-Rao lower bound (CRLB) determines the physical impossibility of the variance of an unbiased estimator being less than the bound, many studies presented the performance analysis in terms of CRLB. Several CRLBs for time-of-arrival (TOA), pseudo-range TOA, angle-of-arrival (AOA), and signal strength (SS) based positioning methods have been derived for NLOS environment. However, the performance analysis of time difference of arrival (TDOA) and TDOA/SS based geolocation techniques in a NLOS environment is still an opening issue. This paper derives the CRLBs of TDOA and TDOA/SS based positioning methods for NLOS environment. In addition, theoretical analysis proves that the derived CRLB for TDOA is the same as that of pseudo-range TOA and the TDOA/SS scheme has a lower CRLB than the TDOA (or SS) scheme.

Grid-based Correlation Localization Method in Mixed Line-of-Sight/Non-Line-of-Sight Environments

  • Wang, Riming;Feng, Jiuchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.87-107
    • /
    • 2015
  • Considering the localization estimation issue in mixed line-of-sight (LOS)/non-LOS(NLOS) environments based on received signal strength (RSS) measurements in wireless sensor networks, a grid-based correlation method based on the relationship between distance and RSS is proposed in this paper. The Maximum-Likelihood (ML) estimator is appended to further improve the localization accuracy. Furthermore, in order to reduce computation load and enhance performance, an improved recursively version with NLOS mitigation is also proposed. The most advantages of the proposed localization algorithm is that, it does not need any prior knowledge of the propagation model parameters and therefore does not need any offline calibration effort to calibrate the model parameters in harsh environments, which makes it more convenient for rapid implementation in practical applications. The simulation and experimental results evidence that the proposed localization algorithm exhibits good localization performance and flexibilities for different devices.

Adaptive Modulation Method using Non-Line-of-Sight Identification Algorithm in LDR-UWB Systems

  • 마림천;황재호;최낙현;김재명
    • 한국통신학회논문지
    • /
    • 제33권12A호
    • /
    • pp.1177-1184
    • /
    • 2008
  • Non-line-of-sight (NLOS) propagation can severely weaken the accuracy of ranging and localization in wireless location systems. NLOS bias mitigation techniques have recently been proposed to relieve the NLOS effects, but positively rely on the capability to accurately distinguish between LOS and NLOS propagation scenarios. This paper proposes an energy-capture-based NLOS identification method for LDR-UWB systems, based on the analysis of the characteristics of the channel impulse response (CIR). With this proposed energy capture method, the probability of successfully identifying NLOS is much improved than the existing methods, such as the kurtosis method, the strongest path compare method, etc. This NLOS identification method can be employed in adaptive modulation scheme to decrease bit error ratio (BER) level for certain signal-to-noise ratio (SNR). The BER performance with the adaptive modulation can be significantly enhanced by selecting proper modulation method with the knowledge of channel information from the proposed NLOS identification method.

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

비가시선(NLOS) 환경에서 ETOA알고리즘을 이용한 실내 위치 추적 시스템 구현 (Implementation of Indoor Location Tracking System Using ETOA Algorithm in Non-Line-Of-Sight Environment)

  • 강경식;최광석
    • 한국통신학회논문지
    • /
    • 제37권4B호
    • /
    • pp.300-308
    • /
    • 2012
  • 다양한 실내 위치 추적 기술들이 제안되고 있다. 일반적으로 TOA(Time of Arrival)신호를 활용한 실내 위치 추적 시에는 건물 내의 다양한 장애물들에 의해 전파의 굴절, 반사, 분산 등에 의해 위치 추적이 어렵다는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 NLOS(Non-Line-Of-Sight)환경에서 ETOA(Estimation-TOA) 알고리즘을 적용한다. ETOA알고리즘은 실내의 NLOS 환경이 발생한 해당 Beacon과의 TOA값을 추측항법을 통해 TOA값을 예측하는 알고리즘이다. 본 알고리즘을 이용하게 되면 삼각측량법을 사용하는 위치추적 시 3개의 노드 중 최대 2개의 노드가 NLOS가 발생하더라도 정확도 있는 위치 추적이 가능하다. 본 논문에서는 ETOA 알고리즘을 실내 이동로봇에 적용하고 로봇내의 관성센서와 칼만 필터를 이용함으로서 정확한 위치 추적을 할 수 있음을 확인하였다.

A Novel Weighting Factor Method in NLOS Environment

  • Guan, Xufeng;Hur, SooJun;Choi, JeongHee
    • 대한임베디드공학회논문지
    • /
    • 제6권2호
    • /
    • pp.108-116
    • /
    • 2011
  • Non-line-of-sight (NLOS) error is the most common and also a major source of errors in wireless location system. A novel weighting factor (NWF) method is presented in this paper, based on the RSS(Received Signal Strength) measurements, path loss model and Circular Disk of Scatterers Model (CDSM). The proposed positioning method effectively weighted the TOA distance measurements for each Base Station (BS). Simulation results show that the proposed method efficiently weighted the distance measurements and achieve higher localization accuracy than that of Linear Line of Position (LLOP) and Believable Factor Algorithm (BFA).

An Effective TOA-based Localization Method with Adaptive Bias Computation

  • Go, Seung-Ryeol
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose an effective time-of-arrival (TOA)-based localization method with adaptive bias computation in indoor environments. The goal of the localization is to estimate an accurate target's location in wireless localization system. However, in indoor environments, non-line-of-sight (NLOS) errors block the signal propagation between target device and base station. The NLOS errors have significant effects on ranging between two devices for wireless localization. In TOA-based localization, finding the target's location inside the overlapped area in the TOA-circles is difficult. We present an effective localization method using compensated distance with adaptive bias computation. The proposed method is possible for the target's location to estimate an accurate location in the overlapped area using the measured distances with subtracted adaptive bias. Through localization experiments in indoor environments, estimation error is reduced comparing to the conventional localization methods.

3.4, 5.3, 6.4 ㎓ 대역 신호의 가시 및 비가시 구간에서의 경로손실 특성 (LOS and NLOS Path-loss Characteristics at 3.4, 5.3, and 6.4 ㎓ in an Urban Environment)

  • 조한신;박병성;육종관;박한규;이정수
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2002년도 종합학술발표회 논문집 Vol.12 No.1
    • /
    • pp.127-131
    • /
    • 2002
  • This paper presents the a measured path-loss characteristics in urban line-of-sight(LOS) and non line-of-sight(NLOS) environments for 3.4, 5.3, and 6.4 ㎓ band signals. A two-ray model is applied to analyse the path-loss characteristics in LOS areas. In LOS areas, an empirical break point, whose distance is shorter than a theorical break point, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area and different path-loss exponents are occured various cases. The power level drop due to comer loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

  • PDF

무선 센서 네트워크 환경에서 Non-Line-of-Sight 오류 감소 방안에 관한 연구 (A Study on the Non-Line-of-Sight Error Mitigation in Wireless Sensor Networks)

  • 김우진;강철규;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.873-875
    • /
    • 2008
  • 센서 네트워크의 위치추정의 정밀도를 높이기 위해서는 NLOS신호의 제거가 필수적이다 따라서 본 논문에서는 위치추정의 정밀도를 높이는 방안으로 NLOS부터 수신한 신호로 추정한 좌표를 반복적으로 제거하는 알고리즘을 제안하였고 이를 시뮬레이션 하여 성능을 검증하였다. 제안한 알고리즘을 사용하였을 경우 10개의 LOS 신호로 추정한 좌표를 가지고 최대 약 3.5미터의 오차범위 내로 위치 추정을 할 수 있음을 확인하였고, NLOS 좌표의 감소에 따라서도 약 1.5미터의 위치추정 정밀도를 향상시킬 수 있었다.

  • PDF