• Title/Summary/Keyword: Non-leaching

Search Result 108, Processing Time 0.025 seconds

Studies on Controlling Mixed Annual and Perennial Weeds in Paddy Fields - On the Herbicidal Properties of Perfluidone - (수종(數種) 다년생잡초혼생답(多年生雜草混生沓)에 있어서 제초제(除草劑)에 의한 효과적(效果的)인 잡초방제(雜草防除) - Perfluidone의 작용특성구명(作用特性究明)을 중심(中心)으로 -)

  • Ryang, H.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.75-99
    • /
    • 1983
  • The herbicidal properties of perfluidone [1,1,1-trifluoro-N-2-methyl-4-(phenylsulponyl) phenyl methanesulfonamide] were investigated in pots and paddy fields. At the rate of 2.0kg prod./10a, perfluidone did not cause any injury to the 4 leaf stage (LS) rice seedlings. Although the crop injury increased with increasing the application rate, the injury caused by 16kg prod. perfluidone/10a gave rise to only 30% yield reduction. The crop injury was greatest when perfluidone was applied 2 days before transplanting and decreased as the application time delayed. Perfluidone showed greater crop injury to the 3 LS seedlings, at more than 7cm water depth, and at high temperature than to the 4 LS seedlings, at 3-5cm water depth, and at low temperature. Indica and indica ${\times}$ japonica rice varieties were generally more sensitive to perfluidone than japonica rice variety. Perfluidone effectively controlled most of annual weeds and such perennial weeds as Sagittaria pygmaea MIQ., Potamogeton distinctus A. BENN, Cyperus serotinus ROTTB, Scirpus maritimus L., Eleocharis kuroguwai OHWL, and Scirpus hotarui OHWL, whereas Sagittaria trifolia L. and Polygonum hydropiper SPACH. were tolerent to perfluidone. The weeding effect decreased with increasing the leaching amount of water and the overflowing of irrigated water within 24 hours after the herbicide application. When the application time was done later than 8 days after transplanting, the perennial weeds were shown at deeper soil layers, and the standing water was deeper than 7cm, the effect tended to decrease. However, there was no difference in the weeding effect between soil types. Downward movement of perfluidone in flooded soil ranged from 2 to 8cm deep. The movement increased with increasing the leaching amount of water and the application rate and at a sandy loam soil which possessed less adsorptive capacity. Residual effect of perfluidone was found at 35 to 80 days after application, which varied such factors as Soil types. Increase in the leaching amount of water resulted in decrease in the period of the residual effect. The period was shorter at non-sterilized soil than at sterilized soil. The 0.75kg ai perfluidone + 1.5kg ai SL-49 (1,3-dimethyl-6-(2,4-dichlor-benzoyl)-5-phenacyloxy-pyrazole)/ha and 1.5kg ai perfluidone + 1.05kg ai bifenox (2,4-dichlorophenyl-3-methoxy carbonyl-4-nitro phenyl ether)/ha showed less crop injury than 1.5kg ai/ha perfluidone alone. However, the weeding effect of the former was similar to that of the later.

  • PDF

Elucidation of Environment Factors Affecting the Differences in the Half-Life of the Insecticide Cyfluthrin in Soil between Field and Laboratory Tests (포장과 실내실험에서 살충제 Cyfluthrin의 토양 중 반감기 차이에 미치는 환경요인 구명)

  • Lim, Bang-Hyun;Lim, Yo-Sup;Choi, Yong-Hwa;Han, Seong-Soo
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.291-297
    • /
    • 2000
  • This study was conducted to find out the environmental factors affecting the differences in the half-life of the insecticide cyfluthrin in soil between field and laboratory tests carried out in 1998. Degradation and leaching of cyfluthrin in soil were examined under various environmental conditions that were considered to affect the residuality. Cyfluthrin was degraded 1.9 times faster in non-sterilized soil than in sterilized soil and 1.2 times at $25^{\circ}C$ than at $15^{\circ}C$. The half-lives of cyfluthrin were 61.4 days under the dark condition and 4.5 days under sunlight, and those were 11.8 days under the open condition and 23.8 days under the closed condition. The half-lives of the authentic compound and the commercial product of cyfluthrin were 15 and 1 day in the field test and 26 and 3 days in the laboratory test, respectively. Cyfluthrin was rapidly degraded with an increase in soil moisture content and decomposed faster in the alkaline solution of pH 12 than in the acidic solution of pH 3, but the half-life of cyfluthrin did not make any difference between pH 6.4 of the field test soil and pH 5.6 of the laboratory test soil. Cyfluthrin was immobile in soil from the results that $81{\sim}94%$ of the initial amount remained in the $0{\sim}2\;cm$ layer of the soil column regardless of the amount and time of rainfall after the chemical treatments. From viewing the abovementioned results, soil moisture content, sunlight and formulation type affected greatly soil microbes and volatilization affected slightly, and temperature, pH and rainfall did not affect the big difference in the half-life of cyfluthrin in soil between the field and laboratory tests in the year of 1998.

  • PDF

Effects of Fly Ash on Components in Percolated Water and Rice Growth (석탄회 처리가 논 토양성분의 용탈과 수도생육에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.226-235
    • /
    • 1996
  • This pot experiment was conducted to investigate the changes of leaching in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively in greenhouse. pH in percolated water was higher in non cultivated plot than in cultivated plot. pH of the fly ash treated plot was higher than that of the control plot. pH in the cultivated plot decreased gradually during the cultivation. The contents of $NH_4-N$, $NO_3-N$ and K in percolated water decreased rapidly after mid-July, and was very low in the cultivated plot. Over the cultivation time, P contents in percolated water was very low. $SiO_2$, contents in percolated water decreased rapidly after June. Na contents in percolated water was highest in mid-June and then decreased gradually. In the cultivated plot, Ca contents in percolated water was higher than that in the control plot. During the cultivation, Ca contents in percolated water decreased gradually. But, in later-term of cultivation. Ca contents in percolated water was relatively Mgh. Mg contents in percolated water decreased after mid-July, but decreased continuously till the later-term of cultivation. EC in the percolated water was highest in mid-June. and then decreased gradually. EC of fly ash treated plot was higher than that of the control plot. The soil pH was increased and phosphate content in the soil was accumulated very high by application of fly ashes in paddy field after rice cultivation. Fly ash treatment did not increase the contents of elements in percolated water compared with the control plot. The difference between anthracite and bituminous fly ash was not so clear. Fly ash treatment, inhibited early growth and tillering. But, in later-term of cultivation, the inhibition effects of nonproductive tillering was expected. Fly ash treatment will be good if it was applicated after last year's harvest because leaching would happen over fallowing time. Contents of inorganic elements in percolated water of fly ash treated plot was not so high compared with that in the control plot.

  • PDF

Comparison of the Effects of Mg-Sulfate and Mg-Hydroxide on Soil pH, EC and Exchangeable Cation Distribution (황산고토와 수산화고토 비료가 토양 pH, EC 및 교환성 양이온 분포에 미치는 영향 비교)

  • Lee, Sang-Jo;Lee, Sung-Ho;Shin, Hyun-Jin;Cho, Hyun-Jong;Kim, Bok-Jin;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.105-112
    • /
    • 2003
  • Effects of magnesium sulfate ($MgSO_4$) and magnesium hydroxide $[Mg(OH)_2]$, which have different chemical characteristics, on soil pH, electrical conductivity (EC), and exchangeable cation distributions were investigated. Using plastic columns packed with a loam soil, the two Mg-fertilizers were treated at the rate of $300kg\;MgO\;ha^{-1}$ and water was applied on the soil surface four times at every 7 days. Soil samples were taken at 5, 10, 15, and 20 cm depth after 7 days of each water application. Magnesium hydroxide could increase soil pH, but due to the low solubility of $Mg(OH)_2$, the effect on pH was limited on the surface soil. Soil pH was lowered in the $MgSO_4$ treatment and the effect was found through the 20 cm depth. Since the pH decrease in $MgSO_4$ treated soil was due to the salts from $MgSO_4$, after leaching of most salts from the investigated soil depth pH was not significantly different from that of non-treated soil. Soil EC was increased in $MgSO_4$ treatment through the soil depth, but in $Mg(OH)_2$ treatment EC was slightly increased only at the surface layer. Exchangeable Mg was increased in both of the treatments at surface layer after the first water application. In $Mg(OH)_2$ treatment, the increase of exchangeable Mg was found only at 5 cm depth through the experiment, but leaching down of Mg in the $MgSO_4$ treatment was very apparent. High concentration of Mg in the $MgSO_4$ treated soil could effectively replace exchangeable Ca through the investigated soil depth, but the effect of $Mg(OH)_2$ on exchangeable Ca was not significant.

Effects of Cooking Methods with Different Heat Intensities on Antioxidant Activity and Physicochemical Properties of Garlic (열처리 조리방법이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1784-1791
    • /
    • 2016
  • Garlic was subjected to eight different cooking methods (raw, boiling, steaming, microwave cooking, deep-frying, oven-roasting, pan-frying, and pan-roasting) utilized for typical Korean cuisine. Garlic was analyzed for antioxidant activities and physicochemical properties to elucidate effects of cooking. Garlic cooked at higher temperatures showed significantly lower lightness and higher yellowness (P<0.001). In particular, deep-frying and pan-frying resulted in lowest lightness and soluble solid content, indicating that non-enzymatic browning reactions were more facilitated. Compared with raw garlic, all cooked garlic tended to have lower thiosulfinates, presumably due to decomposition into polysulfides and/or leaching into cooking water and oil. Microwave cooking retained organic acids, total reducing capacity, and flavonoids, which can be attributed to low microwave intensity and shorter cooking time under which heat-labile bioactive components might have undergone less decomposition. Cooking significantly increased metal-chelating activity (P<0.001). In addition, oven-roasting and pan-roasting enhanced total reducing capacity and flavonoid content, indicating that thermal treatments increased the extractability of bioactive components from garlic. However, boiling, deep-frying, and pan-frying, in which garlic is in contact directly with a hot cooking medium, reduced antioxidant activities. Deep-frying resulted in largest reduction in DPPH radical scavenging activity of garlic, which correlated well with reduction of total reducing capacity and flavonoid content. The results show that the antioxidant activity of garlic could be affected by cooking method, particularly heat intensity and/or direct contact of the cooking medium.

Dissipation of Cyclosulfamuron in Rice Paddies (수도 재배환경 중 제초제 Cyclosulfamuron의 잔류특성)

  • Lee, Young-Deuk;Song, Sung-Do
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2001
  • Several experiments including persistence, distribution, leaching, and terminal residue trials were carried out to investigate the behavior of cyclosulfamuron in rice paddies. Cyclosulfamuron was gradually dissipated in two different soils showing the first-order kinetics. Half-lives of the herbicide were calculated to be $17{\sim}30$ and $14{\sim}16$ days under field and laboratory conditions, respectively. In the paddy soil/water system, the residue tended to reside more in the soil phase as time elapsed. Cyclosulfamuron was less persistent in paddy water than in soil with half-lives of 10 and 19 days, respectively. No cyclosulfamuron was leached below 20 cm-deep soil during water percolation with 50 cm hydraulic head, while some downward mobility was observed within the soil column. When EC and SC formulations of cyclosulfamuron were applied to the paddy field at 120 or 150-day pre-harvest intervals, its terminal residues in hulled rice were all less than 0.01 mg/kg, irrespective of formulation type and application timing. In rice straw, however, some residues were found at $<0.02{\sim}0.05$ mg/kg as SC formulation was applied. Rapid dissipation, restricted mobility, and low terminal residues of cyclosulfamuron in rice paddies suggest that no significant residues would be transported or carried over to the non-target environment.

  • PDF

The Effect of Rice Farming on the Shallow Ground Water Quality (논농사가 천층지하수의 수질에 미치는 영향)

  • Kang, Yun-Ju;Seo, Young-Jin;Lee, Dong-Hoon;Choi, Choong-Lyeal;Park, Man;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.262-268
    • /
    • 2001
  • This study was conducted to investigate the effect of rice farming on seasonal, regional quality of shallow ground water. Ammonium $(NH_4\;^+)$ concentration of paddy soil was found to be the highest in April. Nitrate $(NO_3\;^-)$ concentration of soil and the ground water was determined to be lower during the growing period, May to August than any other periods. Seasonal change of K concentration in soils was shown to be in the tendency similar to that of $NH_4\;^+$. However, $Cl^-$ concentration of soils and the ground water was not changed significantly. $NH_4\;^+$, $NO_3\;^-$, K and $Cl^-$ concentration in W-3 ground water was higher than those of W-1 and W-2. It was clear that nutrients ($NH_4\;^+$, $NO_3\;^-$, K, $Cl^-$) should be leached from the adjacent soil to W-3 ground water by water stream. From this study it is apparent that nutrients can be easily leaching from sandy soils and transported into ground water, but rice plant farming is not non point source of groundwater pollution.

  • PDF

Preparation and Characterization of Ipriflavone-Loaded Poly(L-lactide-co-glycolide) Scaffold for Tissue Engineered Bone (조직공학적 골을 위한 애프리플라본을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang, Ji-Wook;Lee, Bong;Han, Chang-Whan;Lee, Il-Woo;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.226-234
    • /
    • 2003
  • Ipriflavone (IP), a non-hormonal isoflavone derivative, has been shown to interfere with bone remodeling by inhibiting bone resorption and stimulating bone formation. IP consistently increased the amount of Ca incorporated into the cell layer by mesenchymal stem cells (MSCs). In this study, we developed the novel IP loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. IP/PLGA scaffo1ds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy, determination of residual salt amount, differential scanning calorimetry, and X-ray diffractometer, respectively. IP/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of IP on the osteoinduction compared with control PLGA scaffo1ds. Thin sections were cut from paraffin embedded tissues and histological sections were stained H&E, von Kossa, and immunohistochemical staining for Type I collagen and osteocalcin. It can be observed that the porosity was above 91.7% and the pore size was above 101 $\mu\textrm{m}$. Control scaffo1d and IP/PLGA scaffo1ds of 50% IP were implanted on the back of athymic nude mouse to observe the effect of IP on the induction of cells proliferation for 9 weeks. The evidence of calcification, osteoblast, and osteoid from the undifferentiated stem cells in the subcutaneous sites and other soft connective tissue sites having a preponderance of stem cells has been observed. From these results, it seems that IP plays an important role for bone induction in IP/PLCA scaffolds.

Determination of 129I in simulated radioactive wastes using distillation technique (증류법을 이용한 모의 방사성폐기물 중 129I 의 정량)

  • Choi, Ke-Chon;Song, Byung-Cheol;Han, Sun-Ho;Park, Yong-Joon;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.141-148
    • /
    • 2011
  • It is clarified in the radioactive waste transfer regulation that the concentration of radioactive waste for the major radio nuclide has to be examined when radioactive waste is guided to the radioactive waste stores. In case of the low level radioactive waste sample, the analytical results of radioactive waste concentration frequently show a value lower than minimum detectable activity (MDA). Since the MDA value basically depends on the amount of a sample, background value, measurement time, counting efficiency, and etc, it would be necessary to increase a sample amount with a intention of minimizing MDA. In order to measure a concentration of $^{129}I$ in low and medium level radioactive waste, $^{129}I$ was collected by using a distillation technique after leaching the simulated radioactive waste sample with a non-volatile acid. The recovery of $^{129}I$ measured was compared with that measured with column elution technique which is a conventional method using an anion-exchange resin. The recovery of inactive iodide by using the distillation method and column elution were found as $86.5{\pm}0.9%$ and $87.3{\pm}2.7%$, respectively. The recovery and MDA value calculated for distillation technique when 100 g of extracted solution of $^{129}I$ was taken, were found to be $84.6{\pm}1.6%$ and $1.2{\times}10^{-4}Bq/g$, respectively. Consequently, the proposed technique with simplified process lowered the MDA value more than 10 times compared to the column elution technique that has a disadvantage of limited sampling amount.

Nitrogen Budgets for South Korea in 2005 (2005년 대한민국 질소 유입 및 유출 수지)

  • Yun, Dong-Min;Park, Sin-Hyung;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • Nitrogen budgets in Korea in 2005 were estimated using a mass balance approach. Major nitrogen fluxes were divided into three sections: cities, agricultural area, and forest. Nitrogen inputs were chemical and biological fixation, dry and wet deposition, imported food and feed, while crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were nitrogen outputs. Non-point source(NPS) pollution budgets were also estimated by mass balance approach. Annual total nitrogen inputs budgets were 1,442,254 ton$\cdot$yr$^{-1}$, and outputs were 814,415 ton$\cdot$yr$^{-1}$. Approximately 19.4% of nitrogen input leaked to river and seawater as NPS pollution. It contains nitrogen input 21 percent more than the previous research in 2002. Especially the change of government plans affect nitrogen budget. As a result, in the output field, the whole nitrogen amount due to landfill reduce from 20 percent to less than 1 percent.