• Title/Summary/Keyword: Non-isothermal crystallization

Search Result 26, Processing Time 0.024 seconds

A Study on the Correlation Between Crystallinity and Dispersion Characteristics of Eco-Friendly Semiconductive for Power Cable (전력케이블용 친환경 반도전 컴파운드의 결정화도와 분산 특성의 상관관계에 대한 연구)

  • Han, Jae Gyu;Yun, Jun Hyeong;Seong, Soo Yeon;Jeon, Geun Bae;Park, Dong Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.400-404
    • /
    • 2020
  • In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.

Effect of modifiers on the properties of glass-ceramics containing coal bottom ash (석탄 바닥재가 포함된 결정화 유리의 특성에 미치는 수식제의 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • The influence of CaO addition on the crystallization temperature, crystal types, and microstructure of L-A-S ($Li_2O-Al_2O_3-SiO_2$) glass-ceramics system fabricated from a coal bottom ash, produced at thermal power plant, was studied. The glass transition and crystallization temperatures were shifted to the higher temperature position with increasing CaO content in a non-isothermal analysis using a DTA. The major crystalline phases of L-A-S glass-ceramics system produced were identified as ${\beta}$-spodumene ($LiAlSi_2O_6$) and eucryptite ($LiAlSiO_4$). The glass-ceramics showed a bulk and surface crystallization behavior at a time. With increasing CaO content, the ${\beta}$-spodumene peak in XRD increased and some CaO-related phases were formed. The surface crystal grown from the exterior to the center in glass-ceramics showed various shapes by amount of CaO added. Some cracks were generated at the glass-ceramics containing CaO above 9 wt% due to the mismatch of thermal expansion coefficients between a ${\beta}$-spodumene and CaO-related crystal phases.

Study on the Physical and Rheological Properties of Nylon66/MWCNT Composites (나일론66/MWCNT 복합체 물성 및 유변학적 특성 연구)

  • Kim, Do Eui;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.214-218
    • /
    • 2013
  • Nylon66/multi-walled carbon nano tube (MWCNT) composites were fabricated by twin screw extruder. The contents of MWCNT were 1, 3, 5, and 7 wt%. Thermal properties, dispersion, rheological and impact properties were measured by DSC, TGA, X-ray diffraction (XRD), SEM, Dynamic rheometer, and Izod impact tester. The effect of MWCNT on the non-isothermal crystallization of Nylon66 was confirmed by DSC. The complex viscosity at low frequency and the shear thinning tendency of the composites increased with MWCNT content. An increase in the elasticity was confirmed from the decrease in the slop of G'-G" plot. Izod impact strengths of the composites were analyzed as a measure of mechanical properties, which indicated that the composites exhibit a 60% enhancement for the impact strength when 3 wt% MWCNT was added. The dispersion of MWCNT within Nylon66/MWCNT composites was also checked by SEM.

Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT (펠렛형 MWCNT를 사용한 PP/MWCNT 나노복합체 물성 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Polypropylene/multi-walled carbon nanotube(PP/MWCNT) composites along with various MWCNT contents up to 20 wt% were prepared by a twin screw extruder. Nanocomposites having 20 wt% MWCNT as a master batch(M/B) were diluted with PP by way of melt compounding. The electrical/thermal conductivity, morphology, thermal/viscoelastic/mechanical properties were investigated with the variation of MWCNT contents. Also, we compared some properties between 1-step PP/MWCNT and the diluted PP/MWCNT composites. The percolation threshold of electrical and thermal conductivity was measured at about 3 wt% MWCNT. And conductivity of diluted PP/MWCNT composites were superior to those of PP/MWCNT composites. The non-isothermal crystallization temperature and thermal decomposition temperature appeared at higher temperatures with increasing MWCNT contents. Morphology showed that length of MWCNT in diluted PP/MWCNT composites was shortened by twice melt blending, which contributed to improve the tensile strength of PP/MWCNT composites.

Effect of irradiation and LDPE content on crystal formation of PP (PP의 결정형성에 대한 조사가교와 LDPE 함량의 영향)

  • Dahal, Prashanta;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4039-4045
    • /
    • 2014
  • The crystallization behavior of irradiated polypropylene (PP) and the blend is an important parameter for polymer processing. Blends of PP/low density polyethylene (LDPE) with different LDPE contents were prepared by melt mixing in a twin screw extruder. The effect of the LDPE content on the irradiation effectiveness of the PP/LDPE blend with trimethylolpropane-trimetacrylate (TMPTMA) as a crosslinking co-agent was investigated in conjunction with the LDPE loading in the blend. The non-isothermal crystallization and crystal structure were measured by DSC, X-ray diffraction (XRD), and polarized optical microscopy (POM). A decrease in the melting temperature of PP was observed due to irradiation, which may be due to the PP chain scissioning effect of irradiation. The Ozawa component n represents a rod shaped, disc shaped and sphere-shaped geometry of the crystal if the value corresponds to 2, 3 and 4, respectively. Based on Ozawa analysis, the values of n were 3.8 and 2.3 for the pure PP and PP blends with 30 wt% LDPE, respectively. The fact that the crystal geometry of PP changed from spherical to disc and rod shaped was confirmed by Ozawa analysis and POM. The ${\beta}$ form XRD peak of the PP/LDPE blend at $16.1^{\circ}$ disappeared after irradiation due to the crosslinking reaction.

Effect of Styrene and Maleic Anhydride Content on Properties of PP/Pulp Composites and Reactive Extrusion of Random PP (랜덤 PP의 반응압출 및 PP/Pulp 복합체 특성에 대한 스티렌과 무수말레인산 함량의 영향)

  • Lee, Jong Won;Kim, Ji Hyun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.318-323
    • /
    • 2014
  • In order to analyze the effect of maleic anhydride (MAH) content and styrene monomer (SM)/MAH mole ratio on reactive extrusion of maleic anhydride grafted random polypropylenes (MAH-g-rPP), MAH-g-rPPs were prepared by using a twin screw extruder. MAH contents were 0.5, 1.0, 3.0, and 5.0 phr and SM/initiator mole ratio was 0.0, 1.0, and 2.0. Dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C = O) stretching peak at $1700cm^{-1}$ from FT-IR spectrum. The degree of graft reaction increased up to 3.0 phr MAH and showed the optimum value at 1.0 SM/MAH mole ratio from the area ratio of C = O and C-H stretching peak. Thermal and crystallization properties of MAH-g-rPP and PP/MAH-g-rPP/pulp composites were investigated by DSC, TGA, XRD, and POM. There was a decrease in non-isothermal crystallization temperature of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for the fractured surface of PP/MAH-g-PP/pulp composites, MAH content of 1.0 wt% and SM/MAH mole ratio of 1.0 were the optimum formulation as the compatibilizer. The rheological properties of the composites were measured by dynamic Rheometer to compare the processability of the composites with and without compatibilizer. The power law index showed slightly low value at the composites with compatibilizer.