• Title/Summary/Keyword: Non-ionic surfactant (NIS)

Search Result 5, Processing Time 0.02 seconds

Effects of Non-ionic Surfactant Supplementation on Ruminal Fermentation, Nutrient Digestibility and Performance of Beef Steers Fed High-roughage Diets

  • Ahn, Gyu-chul;Kim, Jeong-hoon;Park, Eun-kyu;Oh, Young-Kyoon;Lee, Gang-yeon;Lee, Jung-il;Kim, Chong-min;Park, Keun-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.993-1004
    • /
    • 2009
  • Three experiments were conducted to determine the effects of non-ionic surfactant (NIS) supplementation on ruminal fermentation, nutrient digestibility and performance of beef steers fed high-roughage diets. The objective of experiment 1 was to investigate the effects of NIS supplementation on in vitro ruminal fermentation of cultures administered with corn and barley as grain substrate and rice straw and timothy hay as roughage substrate. The in vivo ruminal fermentation, nitrogen balance and digestibility of nutrients were also examined with steers fed a high-roughage diet in experiment 2. The aim of experiment 3 was to determine the responses to NIS of growing steers fed a high-roughage diet. In experiment 1, ammonia nitrogen concentration for NIS supplementation was higher (p<0.05) than for the control with all substrates. However, concentrations of total volatile fatty acid (VFA), acetate, butyrate and valerate of the incubated roughage substrates, rice straw and timothy hay, were higher (p<0.05) for NIS supplementation than for the control whereas VFA concentrations in the cultures of corn and barley were unaffected. These results indicated that effects of NIS on ruminal fermentation are diet dependent, specifically on roughage sources. In experiment 2, ruminal pH of steers supplemented with NIS was lower (p<0.05) than the control. Ruminal concentrations of ammonia nitrogen, acetate, total VFA and urinary concentrations of purine derivatives were increased (p<0.05) by NIS supplementation. In experiment 3, supplementation of NIS increased (p<0.05) intakes of total feed and corn silage, average daily gain, and feed efficiency of growing steers although they varied depending on supplementation level. Due to the roughage-specific feature of NIS effects, NIS appears to enhance ruminal fermentation of fibrous parts of feeds and, consequently, performance of steers fed a high-roughage diet.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Effects of Non-ionic or Zwitterionic Surfactant on in vitro Digestibility of Rice Straw and Growth of Rumen Mixed Microorganisms. (비이온성 및 양쪽 이온성 계면활성제 첨가가 반추위 혼합 미생물의 성장과 볏짚의 in vitro 소화에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2008
  • This experiment was conducted to investigate effects of non-ionic or zwitterionic (+/-) surfactants on digestibility of rice straw, and changes of growth of rumen mixed microbes, pH, and gas production during in vitro fermentation. Also, during in vitro ruminal fermentation, microbial attachment on rice straw was investigated using scanning electron microscopy (SEM). Tween 80 or SOLFA-850 for non-ionic surfactant (NIS), and 3-(Dodecyldimethylammonio) propanesulfanate (DDAP) for zwitterionic surfactant (ZIS) was supplemented by 0.05% and 0.1% in Dehority's artificial medium containing Holtein rumen fluid, respectively, and the substrate for fermentation was rice straw passed through 1 mm screen. The experiment was composed of 7 treatments (two levels of two NISs, two levels of a ZIS) including the control, and 6, 12, 24, 48 and 72 hr of fermentation time with 3 replications per treatment. Treatment of Tween 80 increased in vitro DM digestibilities during 48 hr and 72 h post fermentations compared to the other treatments, whereas treatment of DDAP as a ZIS resulted in decreased DM digestibility than that of the control from 24 hr post fermentation (P<0.05). Gas production in vitro was greater (P<0.05) with addition of NIS than the control or ZIS, and increased as fermentation time elapsed. Rumen mixed microbial growth was greatest with addition of Tween 80 as NIS, and lowest when DDAP as ZIS was supplemented to the fermentation tube (P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was greater with addition of NIS, but was less with addition ZIS compared with the control. In conclusion we could not found any positive effects of ZIS surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.

Effects of Dietary Addition of Sucrose, Propylene Glycol and Tween 80 on the Performance of Transitional Holstein Cows (Sucrose, Propylene Glycol, Tween 80의 첨가가 전환기 젖소의 생산성에 미치는 영향)

  • 이왕식;김현섭;손근남;김용국;이현준;기광석;백광수;안병석;아주말 칸;하종규
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.839-846
    • /
    • 2006
  • This study was conducted to evaluate the effects of dietary addition of sucrose, propylene glycol and Tween 80 (Polysorbate 80 : Non-ionic Surfactants) on pre-partum (21 d) and post-partum (21 d) nutrients intake, blood metabolites, occurrence of metabolic disorders, milk yield and its composition in Holstein cows. Two basal diets were formulated each for pre- and post-partum period. The diets were mixed daily and fed at ad libitum to transitional cows. Forty cows of similar parity and milk yield were randomly divided into four groups (ten animals in each). The cows in three groups were supplemented either with 280g of sucrose/day (SU), SU+64g propylene glycol/day (SUP) or SUP+50g Tween80/day (SUPT). The feed for the fourth group was not supplemented and this group served as control (C). Pre-partum DM, total digestible nutrients (TDN), and crude protein (CP) intake was similar in cows fed C, SU, SUP, and SUPT diets. Post-partum DM, TDN, and CP intakes were the highest with SUPT diet followed by SU, SUP and control diets. Pre-partum blood non-esterified fatty acids (NEFA) concentration was noticed significantly higher in cows fed control diet compared to those fed SU, SUP and SUPT diets. The concentration of NEFA was similar at calving and during post-partum period across cows fed different experimental diets. Blood glucose and Ca concentration during pre- and post-partum periods were not significantly different in cows fed C, SU, SUP and SUPT diets. Milk yield (kg/day) was similar in cows fed different experimental diets. However, milk fat percent and 4% fat corrected milk yield were higher in cows fed SU diet (p<0.05) followed by SUP, SUPT and C diets. One case of ketosis was recorded in cows fed control diet however its occurrence was not observed in cows fed other diets. Occurrence of retained placenta and mastitis was numerically higher in cows fed control diet compared with those fed SU, SUP and SUPT diets. In conclusion, the NIS and propylene glycol feeding along with sucrose could improve the 4% fat corrected milk and fat yield in early lactating cows with significant reduction in NEFA and metabolic disorders during transitional period.