• Title/Summary/Keyword: Non-ionic surfactant

Search Result 114, Processing Time 0.027 seconds

Degradation and Removal of Nonylphenol Ethoxylates in Wastewater by a Sequencing Batch Reactor Process (연속회분식 반응조 공정에서 하수 중의 nonylphenol ethoxylates의 분해 및 제거)

  • Lee, Seock-Heon;Bum, Jin-Young;Park, Ki Young;Kim, Jong-Guk;Seo, Yong-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.680-688
    • /
    • 2004
  • A sequencing batch reactor (SBR) was operated to investigate the degradation and removal of non-ionic surfactant, nonylphenol ethoxylates (NPEOs) in wastewater using lab scale experimental apparatus. About 5mg/L of NPEO was introduced and only < 0.1mg/L of NPEOs and nonylphenol(NP) in total was detected in treated effluent. In the effluent, long chain ethoxylates (NPEO12-15) were not detected, but short chain ethoxylates (NPEO1,2) were in relatively high concentration. NPEOs in the mixed liquor disappeared more rapidly in anaerobic condition than in aerobic condition.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

Comparison of Froth-flotation Efficiency between Fatty Acid and Non-ionic Surfactant Added to Recovered Paper with Increased Mixing Ratio of OMG (순환제지자원의 OMG비율 증가에 따른 지방산과 비이온성 계면활성제의 탈묵효율 비교)

  • Seo, Jin Ho;Lee, Kwang Seob;Lee, Tai Ju;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.88-95
    • /
    • 2015
  • The main sources of recovered paper for newsprint are old newsprint (ONP) and old magazine (OMG). Recently, a lot of advertisement flyers are flowing into bales of ONP and portion of OMG is increasing in recovered paper because the consumption level of coated paper increases. In this study, nonionic surfactant and fatty acid were used as the de-inking agent for froth-flotation process of mixed recovered paper to investigate the effect of increased mixing ratio of OMG. De-inking efficiency of nonionic surfactant decreased as the mixing ratio of OMG increased; ink removal efficiency of froth-flotation is poor, however, the reject ratio increases due to ash from OMG. In comparison with nonionic surfactant, the ash from OMG had a little effect on reject ratio and optical properties of fatty acid applied flotation accept. If nonionic surfactant and fatty acid are added to pulper and flotation cell sequentially, excessive ash from OMG may not give an adverse effect on de-inking efficiency of mixed recovered paper.

Standardization for Quantitative Analysis of Aromatic Hydrocarbon in Oil Spill Dispersant (유처리제의 방향족 탄화수소 정량방법에 대한 표준화)

  • Cho, Jong-Hoi;Lim, Yoon-Taek;Kim, Woo-Seok;Yun, Young-Ja;Kim, Shin-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.302-310
    • /
    • 2002
  • Demand for organic analysis increase as industries are growing and many products are spreaded in the daily life. One of many products is oil spill dispersant. It was used for oil accident in the ocean. When oil spill dispersant spread at the ocean, the petroleum in the ocean is dispersed. The oil spill dispersant is made of non ionic surfactant and petroleum oil. The non ionic surfactant disperse petroleum from oil accident. The other part is petroleum oil which has aromatic hydrocarbon. Because the aromatic hydrocarbon is cancerogenic material, it directly injure animals in the ocean. This cause the second pollution in the human body. Many oil accidents still are controlled by oil spill dispersant. Therefore quality control of the oil spill dispersant become important and this also demand for the exact quantitative analysis of aromatic hydrocarbon. Hereupon the first we develop separate petroleum oil from surfactant. The second standardize analytical method of aromatic hydrocarbon in the separated petroleum oil.

Relationship Between Mass Transfer and Degradation of Sorbed Phenanthrene in Goethite Catalyzed Fenton-like Oxidation Using Non-ionic/anionic Surfactant (Phenanthrene 의 goethite 촉매에 의한 Fenton 산화에 있어서 음이온/비이온 계면활성제의 영향)

  • Kim, Jeong-Hwan;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.207-212
    • /
    • 2009
  • Surfactants were used as representative anionic and non ionic surfactants to investigate the effect of mass transfer on the mineral-catalyzed Fenton-like oxidation of sorbed phenanthrene. Mass transfer of phenanthrene on the oxide surface or interlayer between aqueous and solid phases was generated by surfactant addition. Apparent solubility of phenanthrene was increased as surfactant concentration increasesd. In tests using Tween 80, oxidation of phenanthrene decreased as apparent solubility increased. High apparent solubility was not responsible for oxidation of sorbed phenanthrene in the sand due to the surfactant acted as a scavenger of degradation. In tests with SDS, $H_{2}O_{2}$ decomposition rate in Fenton-like oxidation was decreased by complexation between goethite and SDS. However, in tests using 32 mM of SDS, efficiency of phenanthrene treatment increased compared to the test without SDS addition. Therefore, suitable amount of SDS addition could provide optimum condition for phenanthrene oxidation on the oxide surface or interlayer between aqueous and solid phase, and decrease $H_{2}O_{2}$ decomposition, and as a result, phenanthrene removal efficiency can be improved.

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning

  • Jung, Yoon-Ho;Kim, Hak-Yong;Lee, Douk-Rae;Park, Sun-Young;Khil, Myung-Seob
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.385-390
    • /
    • 2005
  • The electrospinning process is a fascinating method to fabricate small nanosized fibers of diameter several hundred nanometers. Surfactant-polymer solutions were prepared by adding poly(vinyl alcohol) (PVOH) to distilled water with cationic, anionic, amphoteric, and non-ionic surfactants. Average diameter of the electrospun PVOH fibers prepared from PVOH solution was over 300 nm, and was decreased to 150 nm for the mixture of PVOH/amphoteric surfactant. To explain the formation of ultra fine fiber, the characteristic properties in a mixture of PVOH/surfactant such as surface tension, viscosity, and conductivity were determined. In this paper, the effect of interactions between polymers with different classes of surfactants on the morphological and mechanical properties of electrospun PVOH nonwoven mats was broadly investigated.

Growth of Ice Crystal with Concentration of Surfactant in Water Solution (계면활성제 농도가 빙결정의 입자크기에 미치는 영향)

  • ;稻葉英男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.240-247
    • /
    • 2002
  • Recently, a thermal energy storage system has been developed actively fur the purpose of saving energy and reducing the peak electrical demand. Especially, ice slurry is a promising working fluid for low temperature energy storage systems. A flow of ice crystals has a large cooling capacity as a result of the involvement of latent heat. However, there are still problems related to the recrystallization of ice crystals for realizing long term storage and long distance transportation. To find improvements fur this, a method for the creation of ice crystals resistant to recrystallization has been proposed and researched by the use of an antifreeze protein (AFP) solution etc. In the present study, it has been investigated the growth of ice crystal in several kinds of water solution added non-ionic surfactant. The results shows that size of ice crystal was smaller with increasing in added surfactant. And ice crystal was not increased with added surfactant.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Effect of Cellulase on Characteristics of Denim (중성 셀룰라제 처리에 의한 데님의 물성)

  • Kim, Jee-Yeon;Song, Wha-Soon;Kim, Hye-Rim
    • Fashion & Textile Research Journal
    • /
    • v.11 no.3
    • /
    • pp.469-473
    • /
    • 2009
  • Recently, eco-friendly processing has been focused in the textile industry in order to reduce environmental pollutions. Applications of enzyme technology to the textile industry are an example of more environmentally compatible processes. However, there is not enough quantity of referring to denim fabric subjected to enzymatic treatment. In this study, depending on pH, temperature, cellulase concentration, and treatment time, the weight loss of denim fabrics was examined. Characteristics of enzyme-treated fabrics were measured by tearing strength, stiffness, and K/S values. The effect of a non-ionic surfactant (Triton X-100) on characteristics of the enzyme-treated fabrics was evaluated. The cellulase treatment condition on the cotton fabric were optimized to pH 6.0, $50^{\circ}C$, 1%(o.w.f.), and 60minutes. Characteristics of denim fabrics by cellulase treatment in the presence of Triton X-100 did not improve because Triton-X inhibited the activity of enzyme.