Browse > Article

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning  

Jung, Yoon-Ho (Department of Textile Engineering, Chonbuk National University)
Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University)
Lee, Douk-Rae (Department of Textile Engineering, Chonbuk National University)
Park, Sun-Young (Department of Textile Engineering, Chonbuk National University)
Khil, Myung-Seob (Center for Healthcare Technology Development, Chonbuk National University)
Publication Information
Macromolecular Research / v.13, no.5, 2005 , pp. 385-390 More about this Journal
Abstract
The electrospinning process is a fascinating method to fabricate small nanosized fibers of diameter several hundred nanometers. Surfactant-polymer solutions were prepared by adding poly(vinyl alcohol) (PVOH) to distilled water with cationic, anionic, amphoteric, and non-ionic surfactants. Average diameter of the electrospun PVOH fibers prepared from PVOH solution was over 300 nm, and was decreased to 150 nm for the mixture of PVOH/amphoteric surfactant. To explain the formation of ultra fine fiber, the characteristic properties in a mixture of PVOH/surfactant such as surface tension, viscosity, and conductivity were determined. In this paper, the effect of interactions between polymers with different classes of surfactants on the morphological and mechanical properties of electrospun PVOH nonwoven mats was broadly investigated.
Keywords
surfactant-polymer system; electrospinning; morphology; point-bonded structure; interaction.;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 E. E. Shafee and H. F. Naguib, Polymer, 44, 1647 (2003)   DOI   ScienceOn
2 R. Groot, Langmuir, 16, 7493 (2000)   DOI   ScienceOn
3 M. J. Rosen, Surfactants and Interfacial Phenomena, 3rd., John Wiley & Sons, Inc., New Jersey, 2004
4 B. Cabane, J. Phys. Chem., 81, 1639 (1977)   DOI
5 B. Cabane and R. Duplesssix, J. Physique, 43, 1529 (1982)   DOI
6 K. Chari, B. Analek, M. Y. Lin, and S. K. Sinha, J. Chem. Phys., 100, 5294 (1994)   DOI
7 K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, J. Polym. Sci.; Polym. Phys. Ed., 41, 1256 (2003)   DOI   ScienceOn
8 K. Shirahama, K. Tsujii, and T. Takagi, J. Biochem., 75, 309 (1974)   DOI
9 J. Zeleny, Phys. Rev., 3, 69 (1914)   DOI
10 X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002)   DOI   ScienceOn
11 V. B. Fainerman, R. Miller, and E. V. Aksenenko, Adv. Colloid Interfac., 96, 339 (2002)   DOI   ScienceOn
12 G. I. Taylor, Proc. R. Soc. London A., 280, 383 (1964)
13 R. M. Manglik, V. M. Wasekar, and J. Zhang, Exp. Therm. Fluid Sci., 25, 55 (2001)   DOI   ScienceOn
14 M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, J. Biomed. Mater. Res., Part B: Appl. Biomater., 72B, 117 (2005)   DOI
15 M. S. Khil, H. Y. Kim, Y. S. Kang, H. J. Bang, D. R. Lee, and J. K. Doo, Macromol. Res., 13, 62 (2005)   DOI
16 C. C. DeMerlis and D. R. Schoneker, Food and Chemical Toxicology, 41, 319 (2003)   DOI   ScienceOn
17 A. Formhals, U.S. Pat. 1,975,504 (1934)
18 Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003)   DOI   ScienceOn
19 P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE J., 45, 190 (1999)   DOI   ScienceOn
20 M. S. Khil, H. Y. Kim, M. S. Kim, S. Y. Park, and D. R. Lee, Polymer, 45, 295 (2004)   DOI   ScienceOn
21 S. Tarahomjoo and I. Alemzadeh, Enzyme. Microb. Tech., 33, 33 (2003)   DOI   ScienceOn
22 C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park, Materials Letters, 57, 1579 (2003)   DOI   ScienceOn
23 K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003)   DOI   ScienceOn