• Title/Summary/Keyword: Non-dominant

Search Result 926, Processing Time 0.03 seconds

The Study on Difference in Height Cognition Ability in Dominant and Non-dominant Eye (우세눈과 비우세눈의 높낮이 식별 인지능력 차이에 관한 연구)

  • Choi, Yul-Jung;Lee, Jun-Yong;Sim, Hyun-Po
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Background: The purpose of this study was to investigate the difference of height cognition ability according to dominant or non-dominant eye. Methods: Forty one healthy adults (male: 19, female: 22, 22-43 years) participated in this study. Hole in the card test was performed to identify dominant eye. To figure out height cognition ability between dominant and non-dominant eye, we had subjects answer which point is higher or even on the monitor. Results: The Right answer on dominant eye was $8.15{\pm}1.44$ point and the right answer on non-dominant eye was $7.56{\pm}1.55$ point. There was a statistically significant difference between dominant eye group and non-dominant eye group (p<.05). Conclusion: We think that the dominant eye may be used for reliable diagnosis. In future study, investigate on relation between dominant hand and dominant eye and the difference of dominant eye and non-dominant eye when to palpation are required.

  • PDF

Comparison of Grip Force, Coordination, and Dexterity Between Dominant and Non-dominant Hand According to Gender (성별에 따른 우세손과 비우세손의 파악력, 협응력, 기민성 비교)

  • Park, Chan-Hyun;Son, Ho-Hee
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.73-81
    • /
    • 2022
  • Purpose: The aim of this study was to present specific criteria for setting goals for hand rehabilitation by comparing the degree of difference in grip force, coordination, and dexterity between the dominant and non-dominant hand according to gender. Methods: We recruited 100 healthy adults in their 20s and 30s. A handheld digital dynamometer was used to evaluate the grip force of each of the dominant and non-dominant hand, a chopsticks manipulation test was used to evaluate coordination, and the Purdue Pegboard test was used to evaluate agility. Results: In all subjects, the grip force, coordination, and dexterity showed statistically significant difference (p <0.01) between the dominant and non-dominant hand. In the comparison according to gender, both male and female dominant and non-dominant hands showed statistically significant differences in grip force, coordination, and dexterity (p <0.01). In the comparison according to grip force, there was a statistically significant difference between the dominant and non-dominant hand, and men showed stronger result values in both hands compared to women (p <0.01). In the comparison according to coordination, there was no statistically significant difference between the dominant and non-dominant hand in men and women (p >0.05). In the comparison according to dexterity, there was a statistically significant difference between the dominant and non-dominant hand, and women were shown to be faster in performance time with both hands, compared to men (p <0.01). Conclusion: Differences according to gender exist in grip force and dexterity but not coordination, and differences between dominant and non-dominant hand exists across all measurements. The results suggest setting a recovery goal according to dominance and gender during rehabilitation of hand function.

Evaluation of Consistency on Kinematic Factors in Women Javelin Throw (여자 창던지기 운동학적 요인의 일관성 평가)

  • Hong, Soon-Mo;Lee, Young-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • The purpose of this study was to investigate variability of kinematic factors affecting the record in women's javelin throwing. For this study, 8 female-javelin thrower participated in this experiment. The three digital video cameras (Sony, 120x) were used to record motions. Kwon3D 2.1 was used to process data and they were analyzed with Excell for factors. The sampling rate of a camera was 60Hz and shutter speed of a camera was 1/1000sec. The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 6Hz. The results were as follows: 1. From cross step to landing of delivery, the average velocities of CoM of non-dominant athletes were greater than dominant athletes and those of CoM of non-dominant athletes less than dominant athletes, but at release dominant athletes had a lower average velocity and a variability than non-dominant athletes. 2. From cross step to landing of delivery, the average throwing velocities and variabilities of a javelin of dominant athletes were greater than dominant athletes, but at release, dominant athletes had a higher velocity than dominant athletes and had a equal variability. 3. At every events, a forward or backward angles and variabilities of non-dominant athletes were greater than dominant athletes. 4. From cross step to landing of delivery, dominant athletes' elbow average angles were greater than non-dominant athletes and the variabilities of latter less than non-dominant athletes, but at release dominant athletes' variabilities were smaller than non-dominant athletes. 5. At landing of delivery, dominant athletes' knee average angles and variabilities of a supporting foot were a greater than non-dominant athletes, and at release, dominant athletes' knee average angles was a greater but variabilities less than non-dominant athletes. In conclusion, the dominant threw javelins fast while having stable postures and the range of elbow's angle large.

Comparison of Balance and Muscle Strength between Dominant and Non-dominant Legs in Adults

  • Kim, Eun Jung;Jung, Nam Jin;Kim, Seung Gyu;Lee, Jae Hong
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.4
    • /
    • pp.1626-1630
    • /
    • 2018
  • The purpose of this paper was to investigate the comparison of balance and muscle strength between dominant and non-dominant legs in adults. Thirty adults in their 20s participated in this study. The dominant and non-dominant legs were selected based on the dominant hands of the target. The subject's muscle strength of legs was measured with Nicholas MMT, and the balance was measured with BIO-Rescue. We compared the dominant and non-dominant legs based on the results. The result, indicated no statistical difference on balance and muscle strength between dominant and non-dominant legs(p>.05). The results of this study will be helpful in setting the effective treatment direction and treatment level, and in controlling posture, balance and motor function.

The Effects of Extensor Pattern Position and Elastic Taping of Non-Dominant Hand on the Grip Strength of Dominant Hand

  • Lee, Jung-Hoon;Yoo, Won-Gyu;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • Grip strength is an objective indicator for evaluating the functional movement of upper extremities. Therapists have been using it for a long time as an excellent barometer for evaluating the therapy process, therapeutic effects and prognosis of patients with injuries in upper extremities. This study investigated the effects of extensor pattern position and elastic taping of non-dominant hand on the grip strength of dominant hand among general adults. The subjects of this study were 23 males and 7 females from physical therapy departments of 3 Universities located in Busan who agreed to participate in the experiment and the resultant data were analyzed using SPSS version 12.0. The results of the study were as follows. First, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously (Bonferroni-corrected p<.001). Second, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the elastic taping of non-dominant hand was applied (Bonferroni-corrected p<.001). Third, there was no significant difference between the grip strength of dominant hand when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously and that when the elastic taping of non-dominant hand was applied. The irradiation effects through the extensor pattern position of non-dominant hand and application of the elastic taping to non-dominant hand showed significant results in improving the maximum grip strength of dominant hand. This finding could be suggested as the probability for the indirect treatment of the upper extremities of hemiplegia and orthopedic patients due to the long-term fixing of upper extremities.

  • PDF

Analysis of the Ground Reaction Force Parameters According to the Change of Position and Weights of Bag during Downward Stairs Between Dominant and Non-dominant in Upper & lower limbs (계단내리기 시 우세·비우세 체지의 가방착용과 무게변화에 따른 지면반력 파라미터 분석)

  • Hyun, Seung-Hyun;Lee, Ae-Ri;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • The purpose of this study was to analyze of the GRF (ground reaction force) parameters according to the change of positions and weights of bag during downward stairs between dominant and non-dominant in upper & lower limbs. To perform this study, participants were selected 9 healthy women (age: $21.40{\pm}0.94yrs$, height: $166.50{\pm}2.68cm$, body mass: $57.00{\pm}3.61kg$, BMI: $20.53{\pm}1.03kg/m^2$), divided into 2 carrying bag positions (dominant arm/R, non-dominant arm/L) and walked with 3 type of bag weights (0, 3, 5 kg) respectively. One force-plate was used to collect GRF (AMTI OR6-7) data at a sample rate of 1000 Hz. The variables analyzed were consisted of the medial-lateral GRF (Fx), anterior-posterior GRF (Fy), vertical GRF (Fz), impact loading rate and center of pressure (COPx, COPy, COP area, COPy posterior peak time) during downward stairs. 1) The Fx, Fy, Fz, COPx, and COP area of GRF were not statistically significant between dominant leg and non-dominant leg, but non-dominant leg, that is, showed the higher COPy, and showed higher impact loading rate than that dominant leg during downward stairs. 2) In bag wearing to non-dominant arm, Fx, Fz, COPx, COPy, impact loading rate and COP area showed increase tendency according to increase of bag weights. Also, against bag wearing to dominant arm, non-dominant showed different mechanism according to increase of bag weights. The Ground Reaction Force parameters showed different characteristics according to the positions and weights of bag during downward stairs between dominant and non-dominant arm.

Isokinetic Evaluation of the Ankle Dorsi Flexors and Plantar Flexors of Operated Laminectomy & Disectomy Patients (요추간판 수핵 탈출증 수술환자의 족관절 척측굴곡근과 배측굴곡근의 등속성운동 평가)

  • Choi, Byung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.3
    • /
    • pp.51-56
    • /
    • 1996
  • Isokinetic test of muscle strength was performed on 20 patients operated laminectomy & discectomy. Peak torque of ankle dorsi flexors & plantar flexors at the angular velocity of $30^{\circ}$/sec and average power and total work of ankle dorsi flexors & plantar flexors at the angular velocity $90^{\circ}$/sec were measured and analyzed. The result were as follows: 1. Peak torque of non - dominant dorsi flexors at $30^{\circ}$/sec showed no significant difference statistically, but dominant dorsi flexors at $30^{\circ}$/sec showed significant difference statistically(p<0.05). 2. Peak torque of dominant & non - dominant plantar flexors at $30^{\circ}$/sec showed significant difference statistically(p<0.05). 3. Average power of dominant & non - dominant dorsi flexors at $90^{\circ}$/sec showed no significant difference statistically. 4. Average power of dominant & non - dominant plantar flexors at $90^{\circ}$/sec showed significant difference statistically (p<0.05). 5. Total work of dominant & non - dominant dorsi flexors at $90^{\circ}$/sec showed no significant difference statistically. 6. Total work of dominant & non - dominant plantar flexors at $90^{\circ}$/sec showed significant difference statistically(p<0.05).

  • PDF

Comparison of Grip and Pinch Strength between Dominant and Non-dominant Hand according to Type of Handedness of Female College Students

  • Kim, Ji-Sung;Lee, Sa-Gyeom;Park, Sung-Kyu;Lee, Sang-Min;Kim, Bo-Kyung;Choi, Jung-Hyun;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.201-206
    • /
    • 2011
  • In using both hands, everyone dominantly use one hand and it is called left-handedness or right-handedness person. Measurements of grip and pinch strength provide objective indexes to represent functional integrity of the upper extremity. This study was conducted for thirty female college students(19 right-handedness and 11 lefthandedness). For assessment of the type of handedness, questionnaire was used; for grip strength, Jamar dynamometer was used; for pinch strength, Jamar pinch gauge was used. In right handedness, the grip and pinch strength of the dominant right hand was significantly higher than those of the non-dominant hand. In addition, regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hands. In both groups of left and right handedness, the grip and pinch strength of the dominant hand were significantly higher than those of the non-dominant hand, and regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hand.

The Influence of Different Objects and Target Locations of Dominant Hand on the Non-Dominant Hand Movement Kinematics in Bimanual Reaching (양손으로 물체 옮기기 과제 수행 시 우세손이 옮기는 물체의 종류와 목표점의 위치 변화가 비우세손의 팔뻗기 동작에 미치는 영향)

  • Kim, Min-Hee;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.44-52
    • /
    • 2008
  • The purpose of this study was to investigate the effects of different objects and target location of dominant hand on the non-dominant hand movement kinematics in a bimanual reaching task. Fifteen right-handed volunteers were asked to reach from same starting point to the different target point of right and left hand with grasping the objects of different size. Independent variables were 1) three different object types (small mug cup, name pen, and PET bottle), and 2) three different target locations (shorter distance, same distance, and longer distance than the non-dominant hand) of the dominant hand. Dependent variables were movement time (MT), movement distance (MD), movement mean velocity ($MV_{mean}$), and movement peak velocity ($MV_{peak}$) of the non-dominant hand. Repeated measures two-way analysis of variance (ANOVA) was used to test for differences in the non-dominant hand movement kinematics during bimanual reaching. The results of this study were as follows: 1) MT of the non-dominant hand was increased significantly when traveling with grasping the mug cup and reaching the far target location, and was decreased significantly when traveling with grasping the PET bottle and reaching the near target location of the dominant hand. 2) MD of the non-dominant hand was significantly increased during reaching the far target location, and significantly decreased during reaching the near target location with dominant hand. 3) $MV_{mean}$ of the non-dominant hand was increased significantly when traveling with grasping the PET bottle, and was decreased significantly when traveling with grasping the mug cup of the dominant hand. Therefore, it can be concluded that the changes of the ipsilateral hand movement have influence on coupling of the contralateral hand movement in bimanual reaching.

  • PDF

A Study on the Difference of Total Grip Strength and Individual Finger Force between Dominant and Non-dominant Hands in Various Grip Spans of Pliers

  • Kong, Yong-Ku;Park, Hyunjoon;Kim, Dujeong;Lee, Taemoon;Roh, Eunyoung;Lee, Seulki;Zhao, Wenbin;Kim, Dae-Min;Kang, Hyun-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.503-509
    • /
    • 2013
  • Objective: The purpose of this study is to analyze the individual finger force between dominant hand and non-dominant hand and to investigate an effect of the individual finger on the total grip strength depending on dominant hand and non-dominant hand. Background: Many studies on the ratio of the grip force between dominant hand and non-dominant hand has been researched. While a 10% rule which is a ratio of the grip force between dominant hand and non-dominant hand has been applied in most studies, studies on the rate of the individual finger force between dominant hand and non-dominant hand have been insufficiently researched. Method: The experiment was preceded with 17 subjects (male, mean 25.8 ages). The individual finger force and total grip strength were measured using pliers being able to change the grip span from 45 to 80mm. Results: The difference of total grip strength between dominant hand and non-dominant hand is following 10% rule. However, the difference of individual finger force between dominant hand and non-dominant hand are not same as the difference of total grip strength. Especially in the case of grip span with 50mm, the differences between total grip strength, index finger, middle finger, ring finger, and little finger were $9.87{\pm}14.80%$, $8.95{\pm}37.17%$, $13.71{\pm}28.27%$, $6.77{\pm}24.35%$, $39.29{\pm}42.46%$, respectively, with p=0.018 of statistical significance. Additionally, the results of regression analysis in 50 and 60mm of grip span showed that the difference in ring finger affected the most to the total grip strength; and the effects followed in order of index finger, middle finger, and little finger. Conclusion: Our study suggests that an effect of individual finger and grip span of pliers have to be considered when explaining the difference of the total grip strength between dominant hand and non-dominant hand. Application: This result is expected to be used for designing ergonomic hand tool.