• Title/Summary/Keyword: Non-destructive techniques

Search Result 225, Processing Time 0.021 seconds

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

Characteristies of the background fabric and coloring of "Buseoksa Temple Gwaebul" in the possession of the National museum of Korea (국립중앙박물관 소장 <부석사 괘불>의 바탕직물과 채색 특성)

  • Park Seungwon;Yu Heisun;Park Jinho;Cheon Juhyun
    • Conservation Science in Museum
    • /
    • v.31
    • /
    • pp.1-20
    • /
    • 2024
  • The "Buseoksa Temple Gwaebul" (1684, K969) in the possession of the National Museum of Korea is a large Buddhist hanging scroll produced for outdoor rituals (gwaebul) at the eponymous temple. The painting demonstrates the most complex composition among the existing Buddhist hanging scrolls as it depicts the Shakyamuni Buddha in the lower middle, surrounded by the Vairocana Buddha, Medicine Buddha, and Amitabha Buddha. This study examines the characteristics of the background fabric and the production methods of the scroll from Buseoksa Temple and explores the characteristics of the coloring techniques by integrating the results of a non-destructive analysis to determine the materials used for coloring. The gwaebul comprises a total of 13 panels, with 11 panels arranged side by side and one panel each added to the top and bottom. The background fabric of the painting consist of semi-transparent silk tabby for the nine panels in the center, and silk tabby for the four panels surrounding the four sides. The coloring materials used to paint the scroll were analyzed using X-ray fluorescence, and were confirmed to be inorganic pigments of red, yellow, green, blue, and white. For some parts painted in yellow and blue, the colors were expressed by first applying light white pigment before adding organic pigments. In addition, ink was used for the black lines and gold leaf was used for the patterns of the Buddhist robes. X-ray irradiation enabled the determination of the location and technique of coloring according to each pigment color by highlighting the difference in brightness depending on the main component and the thickness of each pigment.

The effects of polishing technique and brushing on the surface roughness of acrylic resin (연마 방법과 칫솔질이 아크릴릭 레진의 표면 거칠기에 미치는 영향)

  • Lee, Ju-Ri;Jeong, Cheol-Ho;Choi, Jung-Han;Hwang, Jae-Woong;Lee, Dong-Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.287-293
    • /
    • 2010
  • Purpose: This study evaluated the effect of polishing techniques on surface roughness of polymethyl methacrylate (PMMA), as well as the influence of light-cured surface glaze and subsequent brushing on surface roughness. Materials and methods: A total of 60 PMMA specimens ($10{\times}10{\times}5\;mm$) were made and then divided into 6 groups of 10 each according to the polymerization methods (under pressure or atmosphere) and the surface polishing methods (mechanical or chemical polishing) including 2 control groups. The mechanical polishing was performed with the carbide denture bur, rubber points and then pumice and lathe wheel. The chemical polishing was performed by applying a light-cured surface glaze ($Plaquit^{(R)}$; Dreve-Dentamid GmbH). Accura $2000^{(R)}$, a non-contact, non-destructive, optical 3-dimensional surface analysis system, was used to measure the surface roughness (Ra) and 3-dimensional images were acquired. The surface roughness was again measured after ultrasonic tooth brushing in order to evaluate the influence of brushing on the surface roughness. The statistical analysis was performed with Mann-Whitney test and t-test using a 95% level of confidence. Results: The chemically polished group showed a statistically lower mean surface roughness in comparison to the mechanically polished group (P = .0045) and the specimens polymerized under the atmospheric pressure presented a more significant difference (P = .0138). After brushing, all of the groups, except the mechanically polished group, presented rougher surfaces and showed no statistically significant differences between groups. Conclusion: Although the surface roughness increased after brushing, the chemical polishing technique presented an improved surface condition in comparison to the mechanical polishing technique.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.