• Title/Summary/Keyword: Non-destructive measurements

Search Result 108, Processing Time 0.035 seconds

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

Investigating the fatigue failure characteristics of A283 Grade C steel using magnetic flux detection

  • Arifin, A.;Jusoh, W.Z.W.;Abdullah, S.;Jamaluddin, N.;Ariffin, A.K.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.601-614
    • /
    • 2015
  • The Metal Magnetic Memory (MMM) method is a non-destructive testing method based on an analysis of the self-magnetic leakage field distribution on the surface of a component. It is used for determining the stress concentration zones or any irregularities on the surface or inside the components fabricated from ferrous-based materials. Thus, this paper presents the MMM signal behaviour due to the application of fatigue loading. A series of MMM data measurements were performed to obtain the magnetic leakage signal characteristics at the elastic, pre-crack and crack propagation regions that might be caused by residual stresses when cyclic loadings were applied onto the A283 Grade C steel specimens. It was found that the MMM method was able to detect the defects that occurred in the specimens. In addition, a justification of the Self Magnetic Flux Leakage patterns is discussed for demonstrating the effectiveness of this method in assessing the A283 Grade C steel under cyclic loadings.

A Study on the Crack Depth Measurements of Concrete by Tone-burst Flaw Detect Method (톤바스트 탐상법(探傷法)에 의한 콘크리트의 균열(龜裂)깊이 측정(測定)에 관한 연구(硏究))

  • Han, E.K.;Park, I.G.;Park, J.S.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • Recently, research on the non-destructive testing of concrete has been rapidly increasing in relation with the quality, reliability, durability, and uniformity of concrete used in architectural structures. In this paper, the most important problem is the attenuation phenomena on throughing the side of concrete by ultrasonic wave, and applied tone-burst to decrease the attenuation in minimum. As the result, the correlation between crack-depth and propagation-time, maximum-spectrum and out-amplitude, in-frequency and maximum-spectrum are found to be excellent. The coefficient of each are +0.975, +0.847, -0.718. The merit of tone-burst through this experiment is that the start of reception wave is very excellent.

  • PDF

Evaluating the Influence of Embedded Reinforcement on Concrete Resistivity Measurements (콘크리트 비저항 측정에서 주변 철근의 영향에 대한 실험적 연구)

  • Lim, Young-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.519-526
    • /
    • 2023
  • This research endeavors to explore the nuances in apparent resistivity readings in concrete specimens due to the proximity of embedded reinforcement. To systematically gauge this, concrete samples incorporating singular and paired rebars were meticulously crafted. These rebars were strategically positioned at intervals of 0.03m, 0.04m, and 0.05m from each specimen's midpoint. Subsequent resistivity assessments were conducted at 0.01m increments up to the predetermined rebar location for each sample. A consistent observation was the nadir in apparent resistivity manifesting at the rebar's epicenter. Notably, dual-rebar configurations registered lower resistivity values at this central juncture compared to their single-rebar counterparts. This metric underscores the palpable impact of surrounding reinforcement on resistivity readings. Further, as the spatial separation between rebars increased, the distinctness in their locational identification via resistivity became increasingly pronounced.

Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen;Torres-Arredondo, Miguel Angel;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.229-251
    • /
    • 2012
  • Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer (Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

Comparison of Storage Lifetimes by Variance Assumption using Accelerated Degradation Test Data (파괴적 가속열화시험 데이터의 분산가정에 따른 수명비교)

  • Kim, Jonggyu;Back, Seungjun;Son, Youngkap;Park, Sanghyun;Lee, Moonho;Kang, Insik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2018
  • Estimating reliability of a non-repairable system using the degradation data, variance assumption such as homogeneity (constant) or heteroscedasticity (time-variant) could affect accuracy of reliability estimation. This paper showed reliability estimation and comparison results under normal conditions using accelerated degradation data obtained from destructive measurements, according to variance assumption of the data at each measurement time. Degradation data from three accelerated conditions with stress factors of temperature and humidity were used to estimate reliability. The $B_{10}$ lifetime was estimated as 1243.8 years by constant variance assumption, and 18.9 years by time-variant variance. And variance assumption provided different analysis results of important stresses to reliability. Thus, accurate assumption of variance at each measurement time is required when estimating reliability using degradation data of a non-repairable system.

Plant Growth Monitoring Using Thermography -Analysis of nutrient stress- (열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.