• Title/Summary/Keyword: Non-destructive Method

Search Result 757, Processing Time 0.029 seconds

Calculation of the Surface Chloride and Estimation for the Soundness of Embedded Rebar by Using Colorimetric Distinction Method (비색판별법을 이용한 콘크리트의 표면염화물량 산정 및 매립철근의 건전도 평가)

  • Lee, Mun-Hwan;Lee, Jin-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.794-801
    • /
    • 2003
  • As it is important to measure the degree of the deterioration and predict service life caused by chloride in concrete structure the methods of measuring chloride in the concrete is raised important problems. This study is to set a new standard for using of the colorimetric method through grasping the character of the colorimetric distinction method, and measuring the chloride content at the place discolored. Also, to predict chloride content around embeded bar and time reaching limit chloride concentration through measuring the chloride content of concrete surface by colorimetric distinction method and this study presents the new concept of concrete degradation and diagnosis of the durability by salt damage. According the results, it is possible to use colorimetric distinction method as simplified measurement to measure the fixed quantity of the chloride concentration. What is more, it would make calculation of concrete surface chloride had a wide fluctuation at the general environment extended. Also, it would be make estimating durability of reinforced concrete structures applied to the basic data.

Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning

  • Jun Lee;Kiyoung Kim;Hyeonjin Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.

Current research trends of analytical methods for non-nutritive sweeteners (Non-nutritive sweeteners 분석을 위한 최근 분석기술 동향)

  • Yun, Choong-In;Kim, Young-Jun
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.58-73
    • /
    • 2022
  • Due to the recent demand for low-calorie foods, consumers are looking for alternative sweeteners that can control blood sugar, low risk of tooth decay and low calories. Regulations for permitted sweeteners in food vary from every country, and it is important for the government and the food industry to monitor products containing these sweeteners to ensure global compliance. Therefore, rapid, precise, and accurate analysis for food matrices should be applied to quality control, market surveillance, monitoring, and evaluation of food additive intake in the food industry. To analyze sweeteners simultaneously, it is essential to develop an efficient and rapid analytical method and to perform appropriate pretreatment steps such as solvent extraction and purification. This study presented the recent analysis trends about the suitable extraction method for food matrices focusing on non-nutritive sweeteners. Additionally, techniques for multi-compounds analysis using HPLC and LC-MS/MS and non-destructive analysis techniques using FT-IR were comprehensively described.

Establishment of Ultrasonic Measurement Method for Stone Cultural Heritage Considering Water Content and Anisotropy (함수율과 이방성을 고려한 석조문화유산의 초음파 측정방법 설정)

  • Jo, Young Hoon;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.467-480
    • /
    • 2014
  • This study was focused on measurement methods for stone cultural heritages by analyzing Ultrasonic (P-wave) velocity variations according to the water content and anisotropy of rocks. As a result of analyzing of rock properties, the water content and saturation degree were rapidly changed at the beginning of drying and then showed exponential curve which their rates of change gradually decreased. However, P-wave velocity and its rate of change maintained constant values after natural drying of 10 hours. Therefore, the ultrasonic measurement for stone cultural heritages should be performed after natural drying of 10 hours considering the weather and moisture conditions. In addition, the highest values of anisotropy coefficient exhibited in granite and limestone, and indirect method was insensitive to anisotropy compared to direct method. However, all rocks remained anisotropy by indirect method. Accordingly, ultrasonic measurement considering various directions is required. The research results will contribute to customized non-destructive testing and precise diagnosis for lithological characteristics of stone cultural heritage.

Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel (2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가)

  • Hur, Kwang-Beom;Lee, In-Cheol;Gung, Gye-Jo;Cho, Yong-Sang;Lee, Sang-Guk;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT (CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가)

  • Lee, Bong-Nam;Kim, Cheol-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.348-355
    • /
    • 2015
  • NDT (Non Destructive Test) of the adhesive joints is very important because their strengths have greatly affected by the worker's skill and environmental condition. Recently, the electric impedance method in which 1-2 wt% CNT was dispersed in the adhesive and the electric resistance of the adhesive joint was measured was suggested for the defect detection of the adhesive joint. The uniform dispersion of CNT in the electric impedance method is very important to make a constant electric resistance of the adhesive joint and the accuracy of defect detection depends on the uniform dispersion. In this paper, the adhesive joints in which CNT was dispersed in the adhesive by the four dispersion methods were made and their electric resistance were measured. The pre-process and evaporation process of CNT using the ultrasonic method and agitation method was used and the effective dispersion method was suggested. Also, the criteria to evaluate the dispersivity was proposed.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave (유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법)

  • Kim, Yong-Kwon;Park, Ik-Keun;Park, Sae-Jun;Ahn, Yeon-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

Aluminum Effect as Additive Material in Expanded Graphite/Sand Composite for High Thermal Conductivity

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Ali, Asghar;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.422-430
    • /
    • 2017
  • Al/expanded graphite was successfully synthesized through a facile method including ultrasonic and heat treatment. In the well-designed three dimensional structure, expanded graphite(EG) works as a conductive matrix to support coated Al particles. The effects of the fabrication parameters on the microstructures and thermal conductivities of these composites were investigated. As a result, it was found that composites with graphite volume fraction of 17.4-69.4 % sintered at $600^{\circ}C$/45MPa exhibit in-plane thermal conductivities of 380-940 W/mK, over 90 % of the predictions by rule of mixture. According to the non-destructive analysis results, the synergistic enhancement was caused by the formation of efficient thermally conductive pathways due to the hybrid of the differently sized EG. The structure integrates the advantages of expanded graphite as a conductive support, preserving the electrode activity and integrity and improving the electrochemical performance.