• Title/Summary/Keyword: Non-destructive Evaluation

Search Result 425, Processing Time 0.024 seconds

The Evaluation of Joints Characteristics of Friction Stir Welded Al Alloys for Automobiles (마찰교반접합(FSW)에 의한 자동차용 Al합금의 접합부 특성 평가)

  • Kim, Heung-Ju;Jo, Hyeon-Jin;Jang, Ung-Seong;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.171-173
    • /
    • 2005
  • To evaluate the applicability of dissimilar metal friction stir welding in automobile manufacturing process, friction stir welding trials were carried out for typical 5000 and 6000 series aluminum alloy sheets with 2mm thickness. The sound joints of A15052 and A16061-T6 alloys were successfully formed under a wide range of welding condition. Excellent weld ability has been obtained at a condition of rotating speed 2000rpm and travel speed 100mm/min, while a radiographic test also confirmed defect free joint for this condition. Through the Erichsen cup test, the plastic formability of the FSWelded joints was found to be about 83% of base metal.

  • PDF

Prediction Formulas for Nondestructive Strength of Quartzite Aggregate Concrete (규암 골재를 사용한 콘크리트 구조물의 재령에 따른 비파괴강도 추정식)

  • Oh, Byung-Hwan;Kim, Dong-Wook;Lee, Seung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • The non-destructive tests are widely used to predict the strength of existing structures. The purpose of the present study is to propose the prediction equations for strength evaluation of concrete structures. The present study focuses on the rebound method and ultrasonic pulse velocity method for quartzite aggregate concrete. The major test variables include the water-cement ratio and curing methods. The water-cement ratio are 0.4, 0.5, 0.6, 0.7, respectively and the curing method covers ail-dry condition and standard curing condition. The prediction equations for strength of concrete are proposed from the present test data.

  • PDF

Non-destructive evaluation technology using infrared thermography and near infrared heating for detecting inside-defects of concrete structures (근적외선과 열화상 기법을 이용한 콘크리트 내부 공극 검출)

  • Sim, Jun-Gi;Zi, Goang-Seup;Lee, Jong-Seh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1021-1024
    • /
    • 2008
  • Near infrared heating as an alternative to the conventional heating techniques for thermography -NDT is tried in this paper. A concrete specimen containing a defect was heated by the near infrared ray and the thermography-NDT technique was applied. Using a dimensinless temperature, the defects were detected. It was found that the near infrared ray could efficiently heat up the concrete specimen compared to others conventional methods like lamps, heat flow, etc.

  • PDF

The Measurement System of Space Charge Distribution in Polymer Dielectric Materials by the PEA Method (펄스정전응력법(PEA)을 이용한 고분자 유전체 내의 공간전하분포 측정시스템)

  • Hwang, Bo-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1403-1411
    • /
    • 2012
  • In this paper, we have evaluated theoretically the PEA method which is the most popular methods for the non-destructive measurement of space charge distribution in polymer dielectric materials and is recently one of big issues in DC high voltage cables. On the basis of theoretical evaluation, we have developed the space charge measurement system in polymer dielectrics under DC appled voltage and improved the accuracy of space charge distribution by applying the deconvolution process for distorted signals.

Perspectives on THz Time Domain Spectroscopy

  • Cheville, R.Alan
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.34-52
    • /
    • 2004
  • Over the past decade the experimental technique of THz time domain spectroscopy (㎔- TDS) has proved to be a versatile method for investigating a wide range of phenomena in the ㎔ or far infrared spectral region from 100 ㎓ to 5 ㎔. This paper reviews some recent results of the Ultrafast ㎔ Research Group at Oklahoma State University using ㎔-TDS as a characterization tool. The experimental technique is described along with recent results on ㎔ beam propagation and how ㎔ beam profiles arise from propagation of pulse fronts along caustics. To illustrate how spatio-temporal electric field measurements can determine material properties over a wide spectral range, propagation of ㎔ pulses through systems exhibiting frustrated total internal reflection (FTIR) are reviewed. Finally two potential metrology applications of ㎔-TDS are discussed, thin film characterization and non-destructive evaluation of ceramics. Although ㎔-TDS has been confined to the research laboratory, the focus on application may stimulate the adoption of ㎔- TDS for industrial or metrology applications.

A Non-Destructive Test for Strength Evaluation of Prestressed Concrete Beam Bridges (프리스트레스트 콘크리트 Beam 교량의 콘크리트 강도 평가를 위한 비파괴 검사)

  • Han, Kyoung-Bong;Chun, Young-Duk;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • Due to the heterogeneous nature of a concrete, periodic inspections are compulsory to maintenance of quality of concrete structures. The major object of this study is to analyze and investigate experimentally the experimental equation for the estimate of compressive strength of prestressed concrete. In this study, surface hardness method, ultrasonic method are investigated to evaluate strength of concrete specimens. Specimens are cast in laboratory and cores are cut from specimens in order to estimate the accurate strength. These values are used to compare with calculated values from test data. The result shows that the proposed equation can reproduce the results at prestressed concrete beam girders more appropriately than previous equations.

  • PDF

The Study of Infrared Thermography of a Mild Steel for Nondestructive Evaluation (적외선 카메라에 의한 연강의 비파괴 평가에 대한 연구)

  • Han, Jeong-Seb;Park, Jin-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.72-77
    • /
    • 2008
  • The application of infrared thermography for detecting defects under the surface of a material was studied. Defects in a specimen were made by back-drilled circular holes. To get alarge temperature difference at the surface, a halogen lamp was used for surface heating. We confirmed that the defect location had a good relationship with the maximum temperature difference. The sizes of the defects could be calculated by means of the FWHM. The value of the FWHM of a temperature difference decreased with time. Therefore in an extremely short time after the heating, the true defect size could be measured.

Optimal Gamma Irradiation Using Monte Carlo Simulations on Wooden Cultural Properties, Gimjeotgae (목재 유물 김젖개의 몬테카를로 방법을 이용한 감마선 조사)

  • Yoon, Minchul;Choi, Jong-il;Lee, Yun Jong;Lim, Kil-Sung;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • In this study, there has been investigated the simulation of irradiation dose using Monte Carlo methodology for the biological control of wooden cultural property. In the evaluation of fungal contamination on wooden cultural properties, Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp. were mainly identified from the Gimjeotgae. But these microorganisms were completely inactivated by 20 kGy gamma-rays. For dosimetry simulation of wooden cultural properties, Monte Carlo methodology with MCNP was used. The radiation absorbed dose distribution was predicted at 8.2~18.9 kGy. These results show that irradiation is effective for biologic control of wooden cultural properties and Monte Carlo methodology is useful for non-destructive conservation and preservation of wooden cultural properties.

Structural Health Monitoring for Trains: A review of damage detection methods (철도차량 구조건전성모니터링: 손상 감지 기술 분석)

  • Chong, See-Yenn;Lee, Jung-Ryul;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1545-1561
    • /
    • 2008
  • Among all transportations, railway transports have been promisingly offering excellent energy conservation and travelling time. Inevitably, they become a main role in not only transport goods but also passengers. With leap in development of technology, trains have tremendously enhanced their services in terms of speed, accessibility and comfort. However, the safety and ride quality have become a main issue as the train speed increased. The higher speeds have led the structural dynamics and health must be monitored from time to time to ensure that they are in good condition to provide reliable ride. Among all monitoring systems, the structural health monitoring (SHM) systems are imperative important due to its capability of in-situ monitoring and inherently reduce the maintenance frequencies and the huge associated cost. In this paper, SHM systems and the related non-destructive test and evaluation methods were discussed. The types of damages related to train vehicles as well as the damage hot spots are also included in this paper.

  • PDF

Detection of near surface rock fractures using ultrasonic diffraction techniques

  • Selcuk, Levent
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.597-606
    • /
    • 2019
  • Ultrasonic Time-of-Flight Diffraction (TOFD) techniques are useful methods for non-destructive evaluation of fracture characteristics. This study focuses on the reliability and accuracy of ultrasonic diffraction methods to estimate the depth of rock fractures. The study material includes three different rock types; andesite, basalt and ignimbrite. Four different ultrasonic techniques were performed on these intact rocks. Artificial near-surface fracture depths were created in the laboratory by sawing. The reliability and accuracy of each technique was assessed by comparison of the repeated measurements at different path lengths along the rock surface. The standard error associated with the predictive equations is very small and their reliability and accuracy seem to be high enough to be utilized in estimating the depth of rock fractures. The performances of these techniques were re-evaluated after filling the artificial fractures with another material to simulate natural infills.