DOI QR코드

DOI QR Code

Perspectives on THz Time Domain Spectroscopy

  • Cheville, R.Alan (School of Electrical and Computer Engineering, Oklahoma State University)
  • Received : 2003.12.12
  • Published : 2004.03.01

Abstract

Over the past decade the experimental technique of THz time domain spectroscopy (㎔- TDS) has proved to be a versatile method for investigating a wide range of phenomena in the ㎔ or far infrared spectral region from 100 ㎓ to 5 ㎔. This paper reviews some recent results of the Ultrafast ㎔ Research Group at Oklahoma State University using ㎔-TDS as a characterization tool. The experimental technique is described along with recent results on ㎔ beam propagation and how ㎔ beam profiles arise from propagation of pulse fronts along caustics. To illustrate how spatio-temporal electric field measurements can determine material properties over a wide spectral range, propagation of ㎔ pulses through systems exhibiting frustrated total internal reflection (FTIR) are reviewed. Finally two potential metrology applications of ㎔-TDS are discussed, thin film characterization and non-destructive evaluation of ceramics. Although ㎔-TDS has been confined to the research laboratory, the focus on application may stimulate the adoption of ㎔- TDS for industrial or metrology applications.

Keywords

References

  1. Committee on Optical Science and Engineering, Harnessing light: Optical science and engineering in the 21st century. Washington, D. C.: National Academy Press, 1998.
  2. P. D. Coleman, "Reminiscences on selected millennium higWights in the quest for tunable terahertz-submillimeter wave oscillators," IEEE J. Quantum Electron., vol. 6, pp. 1000-1007, 2000. https://doi.org/10.1109/2944.902148
  3. C. M. Snowden and D. P. Steenson, "Circuits and simulations at 1 THz," Phil Trans. R. Soc. Land. A, vol. 354, pp. 2435-2446, 1996. https://doi.org/10.1098/rsta.1996.0110
  4. C. Fattinger and D. Grischkowsky, "Point source terahertz optics," Appl. Phys. Lett., vol. 53, pp. 1480-2, 1988. https://doi.org/10.1063/1.99971
  5. C. Fattinger and D. Grischkowsky, "Terahertz bearns," Appl. Phys. Lett., vol. 54, pp. 490-2, 1989. https://doi.org/10.1063/1.100958
  6. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B, vol. 7, pp. 2006-15, 1990. https://doi.org/10.1364/JOSAB.7.002006
  7. M. van Exter, C. Fattinger, and G. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett., vol. 55, pp. 337-339, 1989. https://doi.org/10.1063/1.101901
  8. M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1684-91, 1990. https://doi.org/10.1109/22.60016
  9. P. Goldsmith, Quasioptical Systems. (Piscataway, NJ:IEEE Press, 1998.)
  10. S. E. Ralph and D. Grischkowsky, "Trap-enhanced electric fields in semiinsulators: the role of electrical and optical carrier injection," Appl. Phys. Lett., vol. 59, pp. 1972-4, 1991. https://doi.org/10.1063/1.106153
  11. N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett., vol. 58, pp. 222-4, 1991. https://doi.org/10.1063/1.104695
  12. C. Fattinger and D. Grischkowsky, "Beams of Terahertz Electromagnetic Pulses," OSA Proceedings on Picosecond Electronics and Optoelectronics, vol. 4, pp. 225-231, 1989.
  13. J. Van Rudd and D. M. Mittleman, "Influence of substrate-lens design in terahertz time-domain spectroscopy," J. Opt. Soc. Am. B, vol. 19, pp. 319-329, 2002. https://doi.org/10.1364/JOSAB.19.000319
  14. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B, vol. 13, pp. 2424-2436, 1996. https://doi.org/10.1364/JOSAB.13.002424
  15. P. U. Jepsen and S. R. Keiding, "Radiation patterns from lens-coupled terahertz antennas," Opt. Lett., vol. 20, pp. 807-809, 1995. https://doi.org/10.1364/OL.20.000807
  16. W. Lukosz, "Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radia¬tion patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am., vol. 69, pp. 1495-503, 1979. https://doi.org/10.1364/JOSA.69.001495
  17. R. W. P. King and G. S. Smith, Antennas in Matter. (Cambridge: MIT Press, 1981.)
  18. M. Born and E. Wolf, Principles of Optics, (7 ed. New York: Cambridge University Press, 1999.)
  19. M. T. Reiten, S. A. Harmon, and R. A. Cheville, "Terahertz beam propagation measured through three¬dimensional amplitude profile determination," J. Opt. Soc. Am. B, vol. 20, pp. 2215-2225, 2003. https://doi.org/10.1364/JOSAB.20.002215
  20. J. W. Goodman, Introduction to Fourier Optics, (2nd ed. Boston: McGraw Hill, 1996).
  21. A. E. Siegman, Lasers. (Mill Valley: University Science Books, 1986).
  22. J. T. Verdeyen, Laser Electronics. (Englewood Cliffs: Prentice Hall, 1995).
  23. D. You and P. H. Bucksbaum, "Propagation of halfcycle far infrared pulses," J. Opt. Soc. Am. B, vol. 14, pp. 1651-1655, 1997. https://doi.org/10.1364/JOSAB.14.001651
  24. P. Kuzel, M. A. Khazan, and J. Kroupa, "Spatiotemporal transformations of ultrashort terahertz pulses," J. Opt.Soc. Am. B, vol. 16, pp. 1795-1800, 1999. https://doi.org/10.1364/JOSAB.16.001795
  25. V. I. Ar'nold, Catastrophe Theory. (Berlin: Springer Verlag, 1992).
  26. L. Feisen, "Evanescent Waves," J. Opt. Soc. Am, vol. 66, pp. 751-760, 1976. https://doi.org/10.1364/JOSA.66.000751
  27. P. L. Marston, "Geometrical and Catastrophe Optics Methods in Scattering," in Physical Acoustics, vol. 2l. (New York: Academic Press, 1992), pp. 2-22l.
  28. J. A. Lock, "Semiclassical scattering of an electric dipole source inside a spherical particle," J. Opt. Soc.Am. A, vol. 18, pp. 3085-3097, 200l. https://doi.org/10.1364/JOSAA.18.003085
  29. M. T. Reiten, D. Grischkowsky, and R. A. Cheville, "Properties of surface waves determined via bistatic terahertz impulse ranging," Appl. Phys. Lett., vol. 78, pp. 1146-1148, 200l. https://doi.org/10.1063/1.1350418
  30. T. Poston and I. N. Stewart, Catastrophe theory and its applications. (London: Pitnam Publishing Ltd., 1978).
  31. G. Dangelmyer and W. Guttinger, "Topological approach to remote sensing," Geophys. J. R. Astr. Soc., vol. 71, pp. 79-126, 1982. https://doi.org/10.1111/j.1365-246X.1982.tb04986.x
  32. M. J. Gans, "Cross polarization in reflector type beam waveguides and antennas," Bell Sys. Tech. Jour., vol. 55, pp. 289-316, 1976. https://doi.org/10.1002/j.1538-7305.1976.tb03316.x
  33. J. C. G. LeSurf, Millimetre-wave Optics, Devices, and Systems. (Bristol: Adam Hilger, 1990).
  34. L. Allen and J. H. Eberly, Optical resonance and two-level atoms. (New York: John Wiley & Sons, 1975).
  35. B. R. Horowitz and T. Tamir, "Lateral displacement of a light beam at a dielectric interface," J. Opt. Soc. Am., vol. 61, pp. 586-594, 1971. https://doi.org/10.1364/JOSA.61.000586
  36. A. K. Ghatak, M. R. Shenoy, I. C. Goyal, and K. Thyagarajan, "Beam propagation under frustrated total internal reflection," Opt. Comm., vol. 56, 1986. https://doi.org/10.1016/0030-4018(86)90054-4
  37. R. A. Cheville and D. Grischkowsky, "Far-infrared terahcrtz time-domain spectroscopy of flames," Opt. Lett., vol. 20, pp. 1646-8, 1995. https://doi.org/10.1364/OL.20.001646
  38. H. Harde, R. A. Cheville, and D. Grischkowsky, "Terahertz studies of collision-broadened rotational lines," J.Phys. Chem. A, vol. 101, pp. 3646-3660, 1997. https://doi.org/10.1021/jp962974c
  39. H. Harde, R. A. Cheville, and D. Grischkowsky, "Collision-induced tunneling in methyl halides," J. of Opt. Soc. Am. B-Optical Physics, vol. 14, pp. 3282-3293, 1997. https://doi.org/10.1364/JOSAB.14.003282
  40. R. H. Jacobsen, D. M. MIttleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett., vol. 21, pp. 2011-2013, 1996. https://doi.org/10.1364/OL.21.002011
  41. R. A. Cheville and D. R. Grischkowsky, "Far infrared foreign and self broadened rotational linewidths of high temperature water vapor," J. Opt. Soc. Am. B, vol. 16, pp. 317-322, 1998. https://doi.org/10.1364/JOSAB.16.000317
  42. R. A. Cheville and D. Grischkowsky, "Observation of pure rotational absorption spectra in the v2 band of hot $H2_O$ in flames," Opt. Lett., vol. 23, pp. 531-533, 1998. https://doi.org/10.1364/OL.23.000531
  43. B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, "Pulsed terahertz transmission spectroscopy of liquid $CHCI_3$, $CCI_4$, and their mixtures," J. Phys. Chem., vol. 100, pp. 11824-35, 1996. https://doi.org/10.1021/jp960953c
  44. J. T. Kindt and C. A. Schrnuttenrnaer, "Far-infrared Dielectric Properties of Polar Liquids Probed by Femtosecond THz Pulse Spectroscopy," J. Phys. Chem, vol. 100, pp. 10373, 1996. https://doi.org/10.1021/jp960141g
  45. T. I. Jeon and D. Grischkowsky, "Nature of conduction in doped silicon," Phys. Rev. Lett., vol. 78, pp. 1106-1109, 1997. https://doi.org/10.1103/PhysRevLett.78.1106
  46. T. I. Jeon and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy," Appl. Phys. Lett., vol. 72, pp. 3032-3034, 1998. https://doi.org/10.1063/1.121531
  47. T. I. Jeon and D. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett., vol. 72, pp. 2259-2261, 1998. https://doi.org/10.1063/1.121271
  48. P. H. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," in Ultrafast Phenomena in Semiconductors 2001, vol. 384-3, (Materials Science Forum, 2002), pp. 253-258. https://doi.org/10.4028/www.scientific.net/MSF.384-385.253
  49. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett., vol. 80, pp. 154-156, 2002. https://doi.org/10.1063/1.1428619
  50. R. Y. Chiao and A. M. Steinberg, "Tunneling times and superluminality," in Progress in Optics, vol. 37, (E. Wolf, Ed. Amsterdam: Elsevier, 1997), pp. 345-405.
  51. M. Mojahedi, E. Schamiloglu, K. Agi, and K. J. Malloy, "Frequency-domain detection of superluminal group velocity in a distributed Bragg reflector," IEEE J. Quantum Electron., vol. 36, pp. 418-424, 2000. https://doi.org/10.1109/3.831016
  52. J. J. Carey, J. Zawadzka, D. A. Jaroszynski, K. Wynne, "Noncausal Time Response in Frustrated Total Internal Reflection?" Phys. Rev. Lett., vol. 84, pp. 1431-1434, 2000. https://doi.org/10.1103/PhysRevLett.84.1431
  53. H. K. V. Lotsch, "Beam displacement at total internal reflection: The Goos- Hanchen effect II," Optik Zeitschrft fur Licht und Elektronenoptik, vol. 32, pp. 189-204, 1970.
  54. M. T. Reiten, D. Grischkowsky, and R. A. Cheville, "Optical tunneling of single-cycle terahertz bandwidth pulses," Phys. Rev. E, vol. 6403, 200l. https://doi.org/10.1103/PhysRevE.64.036604
  55. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. (New York: J. Wiley and Sons, 1991).
  56. R. Landauer and T. Martin, "Barrier interaction time in tunneling," Rev. Mod. Phys., vol. 66, pp. 217-221, 1994. https://doi.org/10.1103/RevModPhys.66.217
  57. M. T. Reiten, K. McClatchey, D. Grischkowsky, and R. A. Cheville, "Incidence-angle selection and spatial reshaping of terahertz pulses in optical tunneling," Opt. Lett., vol. 26, pp. 1900-1902, 200l. https://doi.org/10.1364/OL.26.001900
  58. T. Tamir, "The Lateral Wave," in Electromagnetic Surface Modes, (A. D. Boardman, Ed. New York: John Wiley and Sons, 1982), pp. 521-548.
  59. P. Balcou and L. Dutriaux, "Dual optical tunneling times in frustrated total internal reflection," Phys. Rev. Lett., vol. 78, pp. 851-854, 1997. https://doi.org/10.1103/PhysRevLett.78.851
  60. J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett., vol. 84, pp. 2370-2373, 2000. https://doi.org/10.1103/PhysRevLett.84.2370
  61. T. Martin and R. Landauer, "Time delay of evansecent electromagnetic waves and the analogy to particle tunneling," Phys. Rev. A, vol. 45, pp. 2611-2617, 1992. https://doi.org/10.1103/PhysRevA.45.2611
  62. A. Ulman, Characterization of Organic Thin Films. (Boston: Butterworth-Heineman, 1995).
  63. D. M. Mittleman, S. Hunsche, 1. Boivin, and M. C. Nuss, "T-ray tomography," Opt. Lett., vol. 22, pp. 904-906, 1997. https://doi.org/10.1364/OL.22.000904
  64. K. S. Lee, T. M. Lu, and X. C. Zhang, "The measurement of the dielectric and optical properties of nano thin films by THz differential time-domain spectroscopy," Microelectronics Journal, vol. 34, pp. 63-69, 2003. https://doi.org/10.1016/S0026-2692(02)00139-8
  65. Z. P. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential timedomain spectroscopy," Appl. Phys. Lett., vol. 76, pp. 3221-3223, 2000. https://doi.org/10.1063/1.126587
  66. Z. P. Jiang, X. G. Xu, and X. C. Zhang, "Improvement of terahertz imaging with a dynamic subtraction technique," Appl. Opt., vol. 39, pp. 2982-2987, 2000. https://doi.org/10.1364/AO.39.002982
  67. M. Brucherseifer, P. H. Bolivar, and H. Kurz, "Combined optical and spatial modulation THz-spectroscopy for the analysis of thin-layered systems," Appl. Phys. Lett., vol. 81, pp. 1791-1793, 2002. https://doi.org/10.1063/1.1505118
  68. S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, "Characterization of thin polymer films using terahertz time-domain interferometry," Appl. Phys. Lett., vol. 79, pp. 875-877, 200l. https://doi.org/10.1063/1.1389823
  69. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, "Enhanced depth resolution is terahertz imaging using phase shift interferometry," Appl. Phys. Lett., vol. 78, pp. 835, 200l. https://doi.org/10.1063/1.1346626
  70. L. Duvillaret, F. Garet, and J. L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B, vol. 17, pp. 452-461, 2000. https://doi.org/10.1364/JOSAB.17.000452
  71. D. Guenther, Modern Optics, (2nd ed. New York: John Wiley & Sons, 1990).
  72. N. W. Ashcroft and N. D. Mermin, Solid State Physics. (New York: Holt, Rhinehart, and Winston, 1976).
  73. R. A. Cheville, R. W. McGowan, and D. Grischkowsky, "Time Resolved Measurements Which Isolate the Mechanisms Responsible for Terahertz Glory Scattering from Dielectric Spheres," Phys. Rev. Lett., vol. 80, pp. 269-272, 1998. https://doi.org/10.1103/PhysRevLett.80.269
  74. R. A. Cheville, R. W. McGowan, and D. R. Grischkmvsky, "Late-time target response measured with terahertz impulse ranging," IEEE Transactions on Antennas and Propagation, vol. 45, pp. 1518-1524, 1997. https://doi.org/10.1109/8.633860
  75. R. W. McGowan, R. A. Cheville, and D. Grischkowsky, "First time measurement of the coupling efficiency of the surface wave on a dielectric cylinder via THz impulse ranging," presented at CLEO, Baltimore, MD, 1999. https://doi.org/10.1109/CLEO.1999.834326
  76. R. W. McGowan, R. A. Cheville, and D. Grischkowsky, "Direct observation of the Gouy phase shift in THz impulse ranging," Appl. Phys. Lett., vol. 76, pp. 670-672, 2000. https://doi.org/10.1063/1.125857
  77. K. Kawase, J. Shikata, and H. Ito, "Narrow-linewidth tunable terahertz-wave sources using nonlinear optics," in Solid-State Mid-Infrared Laser Sources, vol. 89, Topics in Applied Physics, 2003, pp. 397-423. https://doi.org/10.1007/3-540-36491-9_9
  78. M. F. Kimmitt, "Restrahlen to T-rays - 100 years of terahertz radiation," J. Bioi. Phys., vol. 29, pp. 77-85, 2003. https://doi.org/10.1023/A:1024498003492
  79. J. Z. Xu, C. 1. Zhang, and X. C. Zhang, "Recent progress in terahertz science and technology," Prog. Nat. Science, vol. 12, pp. 729-736, 2002.
  80. A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol., vol. 47, pp. 3679-3689, 2002. https://doi.org/10.1088/0031-9155/47/21/302
  81. T. Nagatsuma, "Photonic measurement technologies for high-speed electronics," Meas. Sci. Tech., vol. 13, pp. 1655-1663, 2002. https://doi.org/10.1088/0957-0233/13/11/301
  82. J. Shan, A. Nahata, and T. F. Heinz, "Terahertz timedomain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mat., vol. 11, pp. 31-48, 2002. https://doi.org/10.1142/S0218863502000845
  83. P. Y. Han and X. C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Tech., vol. 12, pp. 1747-1756, 200l. https://doi.org/10.1088/0957-0233/12/11/301
  84. T. W. Crowe, J. 1. Hesler, R. M. Weikle, and S. H. Jones, "GaAs devices and circuits for terahertz applications," Infr. Phys. Tech., vol. 40, pp. 175-189, 1999. https://doi.org/10.1016/S1350-4495(99)00009-2
  85. G. M Rebeiz, "Millimeter-Wave and Terahertz Integrated Circuit Antennas," Proc. IEEE, vol. 80, pp. 1748-1770, 1992. https://doi.org/10.1109/5.175253

Cited by

  1. In Introductory Review to THz Non-Destructive Testing of Composite Mater vol.34, pp.2, 2013, https://doi.org/10.1007/s10762-012-9949-z
  2. A dual-port THz Time Domain Spectroscopy System optimized for recovery of a sample’s Jones matrix vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39322-y