• Title/Summary/Keyword: Non-contrast-enhanced MRA

Search Result 3, Processing Time 0.023 seconds

Principles of Magnetic Resonance Angiography Techniques

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.209-217
    • /
    • 2021
  • Magnetic resonance angiography (MRA) plays an important role in accurate diagnosis and appropriate treatment planning for patients with arterial disease. Contrast-enhanced (CE) MRA is fast and robust, offering hemodynamic information of arterial flow, but involves the risk of a side effect called nephrogenic systemic fibrosis. Various non-contrast-enhanced (NCE) MRA techniques have been developed by utilizing the fact that arterial blood is moving fast compared to background tissues. NCE MRA is completely free of any safety issues, but has different drawbacks for various approaches. This review article describes basic principles of CE and NCE MRA techniques with a focus on how to generate angiographic image contrast from a pulse sequence perspective. Advantages, pitfalls, and key applications are also discussed for each MRA method.

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF

Development and Feasibility Study for Phase Contrast MR Angiography at Low Tesla Open-MRI System (저자장 자기공명영상 시스템에서의 위상대조도 혈관조영기법의 개발과 그 유용성에 대한 연구)

  • Lee, Dong-Hoon;Hong, Cheol-Pyo;Lee, Man-Woo;Han, Bong-Soo
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.177-187
    • /
    • 2012
  • Magnetic resonance angiography (MRA) techniques are widely used in diagnosis of vascular disorders such as hemadostenosis and aneurism. Especially, phase contrast (PC) MRA technique, which is a typical non contrast-enhanced MRA technique, provides not only the anatomy of blood vessels but also flow velocity. In this study, we developed the 2- and 3-dimensional PC MRA pulse sequences for a low magnetic field MRI system. Vessel images were acquired using 2D and 3D PC MRA and the velocities of the blood flow were measured in the superior sagittal sinus, straight sinus and the confluence of the two. The 2D PC MRA provided the good quality of vascular images for large vessels but the poor quality for small ones. Although 3D PC MRA gave more improved visualization of small vessels than 2D PC MRA, the image quality was not enough to be used for diagnosis of the small vessels due to the low SNR and field homogeneity of the low field MRI system. The measured blood velocities were $25.46{\pm}0.73cm/sec$, $24.02{\pm}0.34cm/sec$ and $26.15{\pm}1.50cm/sec$ in the superior sagittal sinus, straight sinus and the confluence of the two, respectively, which showed good agreement with the previous experimental values. Thus, the developed PC MRA technique for low field MRI system is expected to provide the useful velocity information to diagnose the large brain vessels.