• 제목/요약/키워드: Non-contacted strain analysis

검색결과 3건 처리시간 0.02초

변형 해석을 위한 Dual-beam Shearography (Non-Contacted Strain Analysis by Dual-beam Shearography)

  • 김경석;정성욱;장호섭;최태호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2002
  • This paper presents a shearographic technique for measuring in-plane strains. During the measurement, the test object is illuminated alternately with two laser beams, symmetrically with respect to the viewing direction. Employing a phase shift technique, the phase distributions due to object deformation for each beam are obtained separately. The difference of the two phase distributions depicts the derivative of in-plane surface displacements. The technique is equivalent to a system of many strain gages.

  • PDF

미소변형 해석을 위한 Dual-beam Shearography (Strain Analysis by Dual-beam Shearography)

  • 김경석;최태호;김성식;최정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2003
  • In recent years, shearogrpahy has significantly improved capabilities In the areas of unbend and separation detection in tires. Although shearography has many advantages fur qualitative evaluation, the technique remains the problem of quantitative analysis of inside defects, because shearography needs several effective factors including the amount of shearing, shearine direction and induced load, which exist as barrier for the quantitative analysis of inside defects. Since the factors are highly dependent on inspectors skill and also affect the in-situ workability. The factors were optimized and the size of cracks inside of pipeline and tire has been quantitatively determined.

  • PDF

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.