• 제목/요약/키워드: Non-contact displacement measurement

검색결과 84건 처리시간 0.027초

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

비접촉 진동 검출을 위한 유도성 근접센서모듈 개발 (Development of the Inductive Proximity Sensor Module for Detection of Non-contact Vibration)

  • 남시병;윤군진;임수일
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.61-71
    • /
    • 2011
  • 금속물체의 피로도를 측정하기 위하여 고속으로 진동시키면서 비접촉으로 정밀하게 변위를 측정하는 방법에 대한 연구가 많이 이루어지고 있다. 비접촉 고속 진동 검출센서들은 와류 센서나 레이저 센서들을 주로 사용하고있지만 매우 고가이다. 최근 저가의 유도성 센서를 고속 진동검출에 적용하려는 연구가 이루어지고 있으나 아직은 초보단계이다. 본 연구에서는 저가의 유도성 센서를 이용하여 비접촉으로 고속 진동을 검출하는 새로운 근접 센서모듈 설계방법을 제안하였다. 기존의 유도성 센서모듈들은 검파, 적분, 및 증폭과정을 통하여 변위를 검출하기 때문에 아날로그회로 특성상 잡음에 약하고 적분과정에서 변위 검출속도 저하의 요인이 된다. 제안된 방법은 AD변환기(Analog to Digital converter)를 사용하지 않고 진동 주파수신호를 직접 디지털 신호로 변환하는 새로운 방법으로 아날로그 잡음의 영향을 적게 받으며 고속으로 신호를 처리할 수 있는 장점이 있다. 성능 평가를 위하여 셰이커로 진동 주파수를 30Hz부터 1,100Hz 까지 일정간격으로 금속편을 진동시키면서 제안된 센서 모듈을 이용하여 비접촉으로 진동 신호를 검출하였다. 실험결과 비접촉 근접 거리 5mm 이내에서 진동 주파수 검출범위는 DC에서 1,100Hz까지 측정할 수 있었으며 진동 폭의 해상도는 $20{\mu}m$로 나타났다. 따라서 제안된 유도성 센서모듈은 정밀 비접촉 고속 진동검출 센서로서 충분한 성능을 가지고 있다고 평가된다.

ESPI에 의한 원공판의 2차원 면내변위 측정에 관한 연구 (A study on the measurement of two-dimensional in-plane displacements of the plate with a circular hole by ESPI method)

  • 김경석;최형철;양승필;김형수;홍명석;정운관
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.161-170
    • /
    • 1994
  • This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interfermetry(ESPI) method, in measuring two-dimensional in- plane displacement. The analysis result of measurement by ESPI is quite comparable to that of measurement by strain gauge method. This implieds that the method of ESPI is a very effective tool in non-contact two-dimensional in-plane strain analysis. But there is a controversial point, measurement error. This error is discussed to be affected not by ESPI method itself, but by its analysis scheme of the interference fringe, where the first-order interpolation has been applied to the points of strain measured. Further development of advanced first-order interpolation method is being undertaken for the more precise in-plane strain measurement.

  • PDF

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

TA-ESPI에 의한 외팔보의 탄성계수 측정 (Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI)

  • 이항서;김경석;강기수;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

광삼각법을 이용한 레이저 변위 센서의 특성 연구 (Characteristics of the Laser Displacement Sensor Using Optical Triangulation Method)

  • 박종성;정규원
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.40-50
    • /
    • 1999
  • Recently, a laser displacement sensor is widely used for the manufacturing automation. The sensor is generally composed of a diode laser and a light receiving device. The diode laser emits a laser beam and the receiving device detects the light reflected from the measured object. The object position is obtained based upon triangulation method. As a light receiving device, a PSD is usually utilized since its structure is very simple and rugged and has a high accuracy. Although the theoretical relationship for this sensor had been developed, the characteristics of the sensor have not been much experimentally studied. In this paper, several experimental results will presented. The measurement accuracy is affected by the surface conditions such as the reflectance characteristics, the angle of the object's surface and the laser intensity. In addition, it is found that the PSD and the signal processing circuit have nonlinearities and showed that those nonlinearities can be reduced by controlling the emitting laser intensity.

  • PDF

광열변위의 위상곡선을 이용한 금속재료의 열확산계수 측정 (Thermal Diffusivity Measurement for Metal Using Phase Curve of Photothermal Displacement)

  • 이은호;이광재;유재석
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.47-53
    • /
    • 2001
  • As the technology has developed and new materials have been produced, it is important to measure the thermal diffusivity of material and to predict the heat transfer in the solid subject to thermal processes. This measurement can be done in a non-contact way using photothermal displacenent spectroscopy. In this study, photothermal displacement method was used to measure the thermal diffusivity quantitatively. The specimens used in this study were the pure materials. The Ar-ion laser was used as an energy source and the periodical deformation induced by this pump laser was detected by the He-Ne laser. The magnitude and the phase angle of deformation gradient were measured. The thermal diffusivity was obtained by analyzing the phase angle of deformation gradient. As the result, comparing with the literature value, the thermal diffusivities of materials measured were showed about 2% error.

원격 비접촉식 목표 추적형 생체신호측정시스템에 관한 연구 (A study on a target-tracking and noncontact type biosignal measurment system Using IR-Radar and Pan-Tilt system)

  • 최광욱;김철성;양철승;이정기
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2237-2242
    • /
    • 2014
  • 전 세계적으로 통신발달, 수명연장 등의 이유로 1인 가구가 급증하고 있으며 그에 따라 고독사 등의 문제점이 발생하고 있다. 이러한 문제점을 해결하고 사생활 침해가 없이 혼자서도 건강한 삶을 유지할 수 있도록 본 논문은 IR-레이더 및 레이저 변위센서를 이용하여 원거리 비접촉 생체신호 측정이 가능한 시스템을 제안하였다. 제안된 시스템은 원거리에서 비접촉으로 생체신호를 측정하는 방법으로, 실내 위치추적을 위한 IR 레이더 시스템과 비접촉 생체신호 측정을 위한 변위센서, 그리고 센서를 목표지점으로 이동하는 구동부로 구성되며 기존의 1m에 불과하던 생체신호 측정거리를 8m이상으로 늘릴 수 있는 시스템이다. 제안된 시스템을 실험을 통하여 타당성을 검증한 결과 정상적으로 측정이 가능하였다.

레이저응용계측에 의한 변위 정량화에 관한 연구 (A Study on the Determination of Displacement by Applied Laser Measurement)

  • 김경석;홍진후;강기수;최지은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2000
  • This study discusses a non-contact optical technique, phase shifting electronic speckle pattern interferometry, that is well suited for a deformation measurement. However, the phase shifting method has difficulties for determinating a deformation quantitatively beacuse of the characteristics of arctan function. In order to solve this problem, phase unwrapping methods has been studied during the last few years. In this study, using phase unwrapping based on line by line scanning phase shifted fringe patterns are studied to determinate a deformation quantitatively. Also least square fitting method is applied to reduce noise and improve image resolution.

  • PDF

변위측정을 위한 선형 CCD 센서와 PSD 센서의 성능 비교에 관한 연구 (Study on Comparing the Performance of Linear CCD sensor with PSD sensor for Distance Measurement)

  • 신명관;박기환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2167-2169
    • /
    • 2004
  • The main concern for a displacement measurement is the performance of a sensor such as speed, resolution, accuracy and so on. The mainly used sensors are a linear CCD(charge coupled device) and a PSD(position sensitive detection) as a non-contact type. The output value of a linear CCD is so sensitive to a temperature change that it needs a cooling device. Additionally, because of its structural problem, there are some limits in resolution and speed, and it needs a complex image processing algorithm. Also, PSD has some disadvantages like sensitivity to environmental lights and nonlinearities. Like this, a linear CCD and PSD have their own characteristics and if we know them well, we can choose the one of the two sensors properly in some applications according to purposes. In this paper, I performed which one is superior to the other among the two sensors in terms of accuracy, resolution, measurement speed, signal to noise ratio.

  • PDF