• Title/Summary/Keyword: Non-contact Sensor

Search Result 294, Processing Time 0.034 seconds

Development of Non-contact Torque Sensor (비접촉 토오크센서의 개발(I))

  • Son, Dae-Rak;Im, Sun-Jae;Kim, Chang-Seok;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 1992
  • A non-contact torque sensor was developed using amorphous alloy. The change of maixmum magnetic induction of C0-based amorphous alloy under the tensile and compressive stress was proportional to applied torque. For the construction of the torque sensor, a glass fiber reinforced-epoxy rod was used as shaft. The amorphous strips were attached on the epoxy shaft in the direction of $+45^{\circ}$and $-45^{\circ}$. The magnetizing coil and 2 sensing coil was installed. The static and dynamic test was carried out. The linearity and sensor hysteresis of the torque sensor was less than 1%.

  • PDF

Development of a Shape Inspection System of the Light Guide Panel

  • Youn, Sang-Pil;Lee, Young-Chon;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.3-53
    • /
    • 2001
  • This paper deals with the development of a shape inspection system of the Light Guide Panel(LGP), and the study for the performance of the system. The conventional contact sensing methods have been used to inspect the shape. However the contact-sensing methods have some problems. The contact between a tip of the sensor and the surface of objects make a sensor tip abraded and generate a defect on the surface of objects. In this paper, we employed the Non-Contact Optical Sensor[1] to measure the shape inspection system of LGPs, The Sensor composed of Hologram laser[3] unit used for CD Optical Pickup[2] is low cost and has a good performance to measure a transparent objects. From the results of experiments for LGP shape inspection ...

  • PDF

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

Study on Non-contact Detection of Surface Cracks of the Metals Using an Open-Ended Coaxial Line Sensor at X-band (마이크로파 X-밴드에서의 종단 개방 동축선 센서를 이용한 금속표면균열의 비접촉 검출 연구)

  • Yang, Seung-Hwan;Kim, Dong-Seok;Kim, Ki-Bok;Kim, Jong-Heon;Kang, Jin-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.192-197
    • /
    • 2012
  • In this paper, a non-contact microwave technique was presented to detect the surface crack of the metals. An open-ended coaxial cable line was used as a sensor at 11 GHz, and the reflection coefficients were measured by scanning along the metal surface including artificial surface cracks. A parameter, the K value which was defined as the difference between maximum and minimum reflection coefficients, was measured and used to estimate the crack depth. A linear relationship between the K value and crack depth was found. This study showed that non-contact detection of the surface cracks of metals is possible using the open-ended coaxial line sensor at X-band.

The Development of Temperature Measurement System using Non-Contact Temperature Sensor Array (비접촉식 온도센서 어레이를 활용한 온도 계측시스템 개발)

  • Kim, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2087-2092
    • /
    • 2015
  • Recently, use of the heat transferring machine and systems has been increasing in various industrial fields. A key technique for constructing such process is basically to measuring temperature directly to objects established on industrial plants. Particularly, a non-contact temperature measurement is very important to realize advanced heat transferring systems. This paper presents a new measurement methodology for temperature by using USN(ubiquitous sensor networks) technique including the microprocessor unit based ZigBee communication systems. This proposed system is made to be applied in monitoring systems for non-contact temperature measurement. We designed firmware based measurement systems whose main function is to save s series of temperature data sets and send it to main monitoring systems.

Development of a Non-contact Type Magnetic Signal Monitoring Equipment for Automotive Electric Devices (비접촉식 자동차 전장용 자기신호 측정 장치)

  • Yang, Hyong-Yeol;Yang, Seung-Hak
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • A non-contact type magnetic signal monitoring equipment for automotive electric devices is proposed in this paper. There are many kinds of actuators in the car like solenoid, relay, motor, injector, etc which are operated by magnetic energy. It is difficult to find out whether the actuators operate well or not because the terminals of the actuators are combined to the connectors. In this paper a non-contact type magnetic signal monitoring equipment using Hall effect sensor is proposed to measure the magnetic signal of the actuators very easily to find out the actuators' operating status. The simulation and experimental results show that the developed equipment is very useful and has good performance.

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Non-Contact Magnetoelastic Torque Sensor Using Amorphous Alloys (비정질합금을 이용한 비접촉 자기탄성 토오크센서)

  • 손대락;임순재;유중렬;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.89-93
    • /
    • 1991
  • A new kind of a non-contact torque sensor which uses the difference of the maximum magnetic inductions as measurand was constructed. The torque sensor utilizes the tensile and compressive stress of two cores which are attached on the rotating shaft. This sensor shows that the linearity was better than 1 %, and the transient torque can be measured at the sampling rate of 10 kHz which is the same as magnetizing frequency of the core.

  • PDF

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.