• Title/Summary/Keyword: Non-contact Sensor

Search Result 297, Processing Time 0.027 seconds

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

Possibility and Accuracy of Extracting Room Temperature Information from Mid-Infrared Sensor Satellite Images (중적외선 센서 위성 영상의 상온 온도 정보 추출 가능성 및 정확도)

  • Choi, SeokWeon;Seo, DooChun;Lee, DongHan
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.356-363
    • /
    • 2021
  • It was common knowledge in textbooks that images acquired using mid-infrared ray were not suitable for measuring temperature near room temperature. But a recent satellite image using a mid-infrared sensor show the possibility that the result measured using the mid-infrared sensor can also measure the temperature near room temperature. In this paper, the possibility and accuracy of extraction room temperature information from satellite images with mid-infrared sensors are reviewed. The mid-infrared satellite image reviewed in this paper showed the temperature of room temperature well, and regarding the reliability as an absolute value of the measured temperature, the effect of the heat transfer amount due to the direct reflection of sunlight on the surface and the effect of the infrared absorption amount absorbed in the atmosphere can be seen as a relatively small or constant value. However, the problem of uncertainty in the radiation coefficient due to physical properties, which is the limit of the non-contact thermometer, remained a problem to be solved.

A Study On The Classification Of Driver's Sleep State While Driving Through BCG Signal Optimization (BCG 신호 최적화를 통한 주행중 운전자 수면 상태 분류에 관한 연구)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.905-910
    • /
    • 2022
  • Drowsy driving requires a lot of social attention because it increases the incidence of traffic accidents and leads to fatal accidents. The number of accidents caused by drowsy driving is increasing every year. Therefore, in order to solve this problem all over the world, research for measuring various biosignals is being conducted. Among them, this paper focuses on non-contact biosignal analysis. Various noises such as engine, tire, and body vibrations are generated in a running vehicle. To measure the driver's heart rate and respiration rate in a driving vehicle with a piezoelectric sensor, a sensor plate that can cushion vehicle vibrations was designed and noise generated from the vehicle was reduced. In addition, we developed a system for classifying whether the driver is sleeping or not by extracting the model using the CNN-LSTM ensemble learning technique based on the signal of the piezoelectric sensor. In order to learn the sleep state, the subject's biosignals were acquired every 30 seconds, and 797 pieces of data were comparatively analyzed.

Non-Contact Gesture Recognition Algorithm for Smart TV Using Electric Field Disturbance (전기장 왜란을 이용한 비접촉 스마트 TV 제스처 인식 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.124-131
    • /
    • 2014
  • In this paper, we propose the non-contact gesture recognition algorithm using 4- channel electrometer sensor array. ELF(Extremely Low Frequency) EMI and PLN are minimized because ambient electromagnetic noise around sensors has a significant impact on entire data in indoor environments. In this study, we transform AC-type data into DC-type data by applying a 10Hz LPF as well as a maximum buffer value extracting algorithm considering H/W sampling rate. In addition, we minimize the noise with the Kalman filter and extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensors. We implemented the DTW gesture recognition algorithm using extracted data and the time delayed information of peak values. Our experiment results show that average correct classification rate is over 95% on five-gesture scenario.

User's Emotional Touch Recognition Interface Using non-contact Touch Sensor and Accelerometer (비접촉식 터치센서와 가속도센서를 이용한 사용자의 감정적 터치 인식 인터페이스 시스템)

  • Koo, Seong-Yong;Lim, Jong-Gwan;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.348-353
    • /
    • 2008
  • This paper proposes a novel touch interface for recognizing user's touch pattern and understanding emotional information by eliciting natural user interaction. To classify physical touches, we represent the similarity between touches by analyzing touches based on its dictionary meaning and design the algorithm to recognize various touch patterns in real time. Finally we suggest the methodology to estimate user's emotional state based on touch.

  • PDF

Thermal environment analysis of greenhouse using Thermo-tracer (Thermo-tracer를 이용한 온실의 열환경 분석)

  • 이석건;이종원;이현우;김란숙
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.230-236
    • /
    • 1998
  • Thermal environment of greenhouse was investigated by thermo-tracer in this study. The Thermo-tracer is a high-sensitivity infrared thermometer of non-contact type. The infrared energy emitted from the measured object is converted into an electrical signal by the detector(HgCdTe) and display as a color or black & white thermal image by way of optical scanning, The experiment was conducted for Venlo-type greenhouse with pad & fan system. The temperature difference between measured by Thermo-trace and measured by HOBO sensor is maximum 0.8$^{\circ}C$. Thermo-trace is possible to use for the thermal environment analysis and diagnosis of a cooling and heating system of greenhouse.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.