• 제목/요약/키워드: Non-contact Displacement Sensor

검색결과 53건 처리시간 0.03초

가속도계를 이용한 배관 변위 진동 계측에 관한 연구 (A Study on the Measurement of the Pipeline Displacement Vibration Using Accelerometers)

  • 서진성
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.476-482
    • /
    • 2014
  • The stress analysis of the pipeline is required in any kind of plant for its safe operation. For this, the displacement vibration data measured at many locations of the pipeline should be provided. In reality, the installation of the non-contact type displacement sensors such as laser displacement sensors or eddy current type proximity sensors in a narrow and confined region in the vicinity of the pipeline is almost impracticable. In this work, the general purpose piezo-ceramic accelerometers were attached on the measuring points on the pipeline and the acceleration vibration signal was acquired. The measured acceleration signal was low pass filtered and then downsampled. The resulting acceleration signal was transformed into both the time-domain and frequency-domain displacement signal utilizing the fast Fourier transform techniques. All the procedures are presented in detail. It is demonstrated that the measurement of the pipeline acceleration by using contact type accelerometers can be made for the purpose of providing the required displacement data for the stress analysis of the pipeline.

표면 가공형 캐비티 압력센서를 이용하여 비전도성 물질용 패키지 기술에 전기적 제어방식 연구 (The Electric Control Method on the Packaging Technology for Non-Conductive Materials Using the Surface Processing Cavity Pressure Sensor)

  • 이선종;우종창
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.350-354
    • /
    • 2020
  • In this study, a pressure sensor for each displacement was fabricated based on the silicon-based pressure sensor obtained through simulation results. Wires were bonded to the pressure sensor, and a piezoresistive pressure sensor was inserted into the printed circuit board (PCB) base by directly connecting a micro-electro-mechanical system (MEMS) sensor and a readout integrated circuit (ROIC) for signal processing. In addition, to prevent exposure, a non-conductive liquid silicone was injected into the sensor and the entire ROIC using a pipette. The packaging proceeded to block from the outside. Performing such packaging, comparing simple contact with strong contact, and confirming that the measured pulse wavelength appears accurately.

광촉침법에 의한 비접촉 3차원 형상측정에 관한 연구 (A Study on Non-contact Measurement of 3D-Objects by Optical Probe Method)

  • 강영준;신성국;삼호융지
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.119-126
    • /
    • 1995
  • This paper presents a non-contact measuring system using one point measuring method to measure surface profiles of dies and clay models for practical use in the field of production engineering. The system has a laser beam probe similar to a measuring probe in a contact measuring system and CCD linear sensor used to detect 300mm measurement range, displacement of measured surfaces, from an origin. There is no mechanical interference between this measuring system and a measured surface in this system. In this measuring system, it was needed 500-600ms including data processing time to measure one point. The experiments showed that the standard deviation was 800 .mu.m and the reproducibility was also 100-210 .mu. m.

  • PDF

윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구 (Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement)

  • 이인수;김해지;안명섭
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

비접촉식 정밀 변위 측정용 자기센서 모델링 (Modeling of a Non-contact Type Precision Magnetic Displacement Sensor)

  • 신우철;홍준희;이기석
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구 (A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor)

  • 박상신;김규하
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

레이져 변위센서를 이용한 용접선 자동추적에 관한 연구(2) (A Study on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor)

  • 양상민;조택동;전진환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.729-733
    • /
    • 1997
  • Due to the variety of disturbance, it is not ease to accomplish the in-process detection of weld line with non-contact sensor. To get around this difficulties problem develop an automatic seam tracking weld system, the reliable signal processing algorithm has been recommanded. In this research, laser displacement sensor is applied as a seam finder in the automatic tracking system. The sensor is controlled by a dc servo motor which is mounted at X-Y moving table. X-Y moving table manipulated by an ac servo motor controls the position and velocity of the welding torch. First, X-Y table moves to Y-axis to search the welding joint feature before starting the welding, and welding joint is from the scanning data and weighting factor for each other. Second, weld line is determined using proposed signal processing algorithm during welding process. Form the experimental results, we could see the possibility that laser displacement sensor with procesed algorithm can be used as a seam finder in welding process under the severe noise (spatter,arc light etc.) condition

  • PDF

기상측정용 3축 구조의 초소형 와전류 센서 개발 및 평가 (Ultra Miniature Eddy Current Sensor with 3 Axes for On-Machine-Measurement)

  • 김선호
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.27-32
    • /
    • 2010
  • The OMM(On-Machine-Measurement) system has many advantages compare to conventional measurement in the way the time and cost. But, the sensor suitable to OMM system is restrictive use. Touch trigger probe sensor has long time for measurement and non-contact sensor has directional demerit. Because the long mechanical parts such as gear and lead screw for pump, injector and machine tools has big and heavy, unclamp and transferring for measurement in machining process is very difficult. This paper presents a development of ultra miniature eddy current displacement sensor with 3 axes for On-Machine-Measurement system. The accuracy of the sensor is experimentally proved in the grinding machine. In experimental results, the accuracy has under ${\pm}5\;{\mu}m$.

Displacement measurement sensor using astigmatic confocal technology

  • J.W. Seo;D.K. Kang;Lee, J.H.;Kim, D.M.;D.G. Gweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.163.2-163
    • /
    • 2001
  • Confocal scanning microscopy (CSM) has been reported as an excellent method using the optical probe in scanning probe microscopy (SPM). Transmission or reflection confocal scanning microscopy (TCSM, RCSM) has been used in the three-dimensional reconstruction of specimen or the non-destructive measurement in vivo. The axial movement of the primary focal point having the information of specimen gives a good measurement performance with the great sensitivity. Application of the confocal theory and astigmatism to displacement measurement sensor uses the aperture as the pinhole or slit after collecting lens relating to confocal response in non-contact measurement; and astigmatic lens using four-segments detector as short-range sensor, long-range one combining the grating and rotary one hating the rotary directional grating. The aperture type can play an ...

  • PDF

자기베어링용 로우터의 형상 오차에 대한 실린더형 캐패시턴스 센서의 측정특성에 관한 연구 (A Study on the Measurement Characteristics of Cylindrical Type Capacitive Transducers to the Roundness Errors of Rotor for Magnetic Bearing)

  • Lee, S.H.;Jung, S.C.;Han, D.C.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.23-31
    • /
    • 1995
  • The sending characteristics of the non-contact type displacement transducers can affect the performances of the magnetic bearing systems when they support the rotating shaft. The probe type displacement sensor detects not only the displacement of the rotor at the sensing position but also the surface irregularitis of the rotor such as surface roughnessand roundness errors. If there exist such measuring errors, the magnetic bearing can not apply proper force against the rotor displacements for the detected signal is the input to the magnetic bearing controllers. The cylindrical shape capacitive transducer can detect the rotor displacement by the integral sum of the charges which are formed between the sensor plates and rotor so that it can reduce the detecting errors induced by the surface irregularities of the rotor. By theore- tical analysis, we compared the sensing characteristics of the cylindrical shape capacitive transducers for the rotors that have some sinusoidal irregularities with that of the ideal probe type displacement transducers.

  • PDF