• Title/Summary/Keyword: Non-conjugated polyelectrolyte (NPE)

Search Result 2, Processing Time 0.017 seconds

Non-Conjugated Polymer Electrolytes for Polymer Solar Cells (고분자 태양전지를 위한 비공액형 고분자 전해질)

  • Nasrun, Rahmatia Fitri Binti;Salma, Sabrina Aufar;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.467-474
    • /
    • 2020
  • Polymer solar cells have attracted extensive attention over the past decade due to their benefits, such as good solution-process-ability, light weight, low-cost, mechanically flexibility, and high efficiency. Conjugated (CPE) and non-conjugated (NPE) polyelectrolyte materials have been employed to avoid the typical weaknesses associated with conventional metal oxide interlayers. However, the application of CPEs is more complicated than that of NPEs because the synthesis procedures are complicated. NPEs containing charged ion groups can provide numerous benefits for renewable energy applications. Especially when implemented in polymer solar cells.

Improved performance of n-type organic field-effect transistor with a non-conjugated polyelectrolyte layer

  • Park, Yu Jung;Cha, Myoung Joo;Lee, Jin Hee;Cho, Shinuk;Seo, Jung Hwa;Walker, Bright
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.151.2-151.2
    • /
    • 2016
  • We characterized the n-type organic field-effect transistors (OFETs) with non-conjugated polyelectrolytes (NPEs) interlayers as the electron injection layer. Novel NPEs with various ions (Cl-, Br-, I-) improved the electron mobility from $5.06{\times}10^{-3}$ to $2.10{\times}10^{-2}cm^2V^{-1}s^{-1}$ in OFETs based [6,6]-Phenyl-$C_{61}$-butyric acid methyl ester (PCBM) when $PEIEH^+I^-$ spin-cast from 0.6% solution was deposited onto the PCBM layer. Reduced electron injection barrier (${\phi}_e$) at NPE/metal electrode interface was induced by dipole formation and led to increase the electron injection and transport. These findings are important for understanding how NPEs function in devices, the improvement of device performance, and the design of new materials for use in optoelectronic devices.

  • PDF