Browse > Article
http://dx.doi.org/10.14478/ace.2020.1060

Non-Conjugated Polymer Electrolytes for Polymer Solar Cells  

Nasrun, Rahmatia Fitri Binti (Department of Polymer Engineering, Pukyong National University)
Salma, Sabrina Aufar (Department of Polymer Engineering, Pukyong National University)
Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 467-474 More about this Journal
Abstract
Polymer solar cells have attracted extensive attention over the past decade due to their benefits, such as good solution-process-ability, light weight, low-cost, mechanically flexibility, and high efficiency. Conjugated (CPE) and non-conjugated (NPE) polyelectrolyte materials have been employed to avoid the typical weaknesses associated with conventional metal oxide interlayers. However, the application of CPEs is more complicated than that of NPEs because the synthesis procedures are complicated. NPEs containing charged ion groups can provide numerous benefits for renewable energy applications. Especially when implemented in polymer solar cells.
Keywords
Polymer solar cell; Non-conjugated polyelectrolyte; Interfacial layer; Organic electronics; Photovoltaic device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro, and Y. Takaoka, A dye sensitized $TiO_2$ photoelectrochemical cell constructed with polymer solid electrolyte, Solid State Ionics, 89, 263-267 (1996).   DOI
2 J. Xia, F. Li, C. Huang, J. Zhai, and L. Jiang, Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes, Sol. Energy Mater. Sol. Cells, 90, 944-952 (2006).   DOI
3 B. H. Hamilton, K. A. Kelly, W. Malasi, and C. J. Ziegler, Tetrakis(imidazolyl)borate-based coordination polymers: Group II network solids, $M[B(Im)_4]_2(H_2O)_2$ (M = Mg, Ca, Sr), Inorg. Chem., 42, 3067-3073 (2003).   DOI
4 M. Y. Jo, Y. E. Ha, and J. H. Kim, Interfacial layer material derived from dialkylviologen and sol-gel chemistry for polymer solar cells, Org. Electron., 14, 995-1001 (2013).   DOI
5 T. T. Do, H. S. Hong, Y. E. Ha, J. Park, Y. C. Kang, and J. H. Kim, Effect of polyelectrolyte electron collection layer counteranion on the properties of polymer solar cells, ACS Appl. Mater. Interfaces, 7, 3335-3341 (2015).   DOI
6 S. Prescher, F. Polzer, Y. Yang, M. Siebenbürger, M. Ballauff, and J. Yuan, Polyelectrolyte as solvent and reaction medium, J. Am. Chem. Soc., 136, 12-15 (2014).   DOI
7 F. Kretschmer, U. Mansfeld, S. Hoeppener, M. D. Hager, and U. S. Schubert, Tunable synthesis of poly(ethylene imine)-gold nanoparticle clusters, Chem. Commun., 50, 88-90 (2014).   DOI
8 A. R. Vancha, S. Govindaraju, K. V. L. Parsa, M. Jasti, M. González-García, and R. P. Ballestero, Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer, BMC Biotechnol., 4, 1-12 (2004).   DOI
9 T. L. Guo, J. G. Li, D. H. Ping, X. Sun, and Y. Sakka, Controlled photocatalytic growth of Ag nanocrystals on brookite and rutile and their SERS performance, ACS Appl. Mater. Interfaces, 6, 236-243 (2014).   DOI
10 T. T. Do, H. S. Hong, Y. E. Ha, G. E. Lim, Y. S. Won, and J. H. Kim, Investigation of the effect of conjugated oligoelectrolyte as a cathode buffer layer on the photovoltaic properties, Synth. Met., 198, 122-130 (2014).   DOI
11 S. Jaffar, K. T. Nam, A. Khademhosseini, J. Xing, R. S. Langer, and A. M. Belcher, Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots, Nano Lett., 4, 1421-1425 (2004).   DOI
12 F. Yamauchi, K. Kato, and H. Iwata, Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer, Langmuir, 21, 8360-8367 (2005).   DOI
13 S. Lee, S. Park, N. Sylvianti, H. K. Choi, and J. H. Kim, Cathode modification of polymer solar cells by electrostatically self-assembled zwitterionic non-conjugated polyelectrolyte, Synth. Met., 209, 441-446 (2015).   DOI
14 N. Sylvianti, T. T. Do, M. A. Marsya, J. Park, Y. C. Kang, and J. H. Kim, Self-assembled poly(4-vinylpyridine) as an interfacial layer for polymer solar cells, Bull. Korean Chem. Soc., 37, 13-18 (2016).   DOI
15 W. Lee, S. Jeong, C. Lee, G. Han, C. Cho, J. Y. Lee, and B. J. Kim, Self-organization of polymer additive, poly(2-vinylpyridine) via one-step solution processing to enhance the efficiency and stability of polymer solar cells, Adv. Energy Mater., 7, 1-9 (2017).
16 G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, and J. H. Kim, Nonconjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices, ACS Appl. Mater. Interfaces, 5, 6508-6513 (2013).   DOI
17 C. A. Junwu and C. Yong, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 42, 1709-1718 (2009).   DOI
18 J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Wei, S. Yin, and T. Sato, Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)-poly(ethylene glycol) composite, J. Photochem. Photobiol. A Chem., 181, 333-337 (2006).   DOI
19 H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells, Mater. Chem. Phys., 110, 38-42 (2008).   DOI
20 R. Shanti, F. Bella, Y. S. Salim, S. Y. Chee, S. Ramesh, and K. Ramesh, Poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and targeted dye sensitized solar cell application, Mater. Des., 108, 560-569 (2016).   DOI
21 B. Walker, H. Choi, and J. Y. Kim, Interfacial engineering for highly efficient organic solar cells, Curr. Appl. Phys., 17, 370-391 (2017).   DOI
22 M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev., 111, 3669-3712 (2011).   DOI
23 B. Walker, A. Tamayo, J. Yang, J. Z. Brzezinski, and T. Q. Nguyen, Solution-processed small molecule-based blue light-emitting diodes using conjugated polyelectrolytes as electron injection layers, Appl. Phys. Lett., 93, 91-94 (2008).
24 Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327-332 (2012).   DOI
25 J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer, J. Am. Chem. Soc., 133, 8416-8419 (2011).   DOI
26 H. L. Yip and A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ. Sci., 5, 5994-6011 (2012).   DOI
27 Y. Yang, C. Zhou, S. Xu, H. Hu, B. Chen, J. Zhang, S. Wu, W. Liu, and X. Zhao, Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes, J. Power Sources, 185, 1492-1498 (2008).   DOI
28 H. Wang, W. Zhang, C. Xu, X. Bi, B. Chen, and S. Yang, Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly, ACS Appl. Mater. Interfaces, 5, 26-34 (2013).   DOI
29 Y. E. Ha, G. E. Lim, M. Y. Jo, J. Park, Y.-C. Kang, S.-J. Moon, and J. H. Kim, Enhancing the efficiency of opto-electronic devices by the cathode modification, J. Mater. Chem. C, 2, 3820-3825 (2014).   DOI
30 F. Zhang, M. Ceder, and O. Inganas, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Adv. Mater., 19, 1835-1838 (2007).   DOI
31 P. M. Beaujuge and J. M. J. Frechet, Molecular design and ordering effects in ${\pi}$-functional materials for transistor and solar cell applications, J. Am. Chem. Soc., 133, 20009-20029 (2011).   DOI
32 Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591-595 (2012).   DOI
33 M. Y. Jo, Y. E. Ha, and J. H. Kim, Polyviologen derivatives as an interfacial layer in polymer solar cells, Sol. Energy Mater. Sol. Cells, 107, 1-8 (2012).   DOI
34 C. H. Woo, B. C. Thompson, B. J. Kim, M. F. Toney, and J. M. J. Frechet, The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance, J. Am. Chem. Soc., 130, 16324-16329 (2008).   DOI
35 G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater., 21, 1323-1338 (2009).   DOI
36 H. Zhou, L. Yang, and W. You, Rational design of high performance conjugated polymers for organic solar cells, Macromolecules, 45, 607-632 (2012).   DOI
37 C.-Y. Lee, B. S. Kim, K. H. Kim, Y. Yoon, M. W. Lee, D. H. Choi, M. J. Ko, H. Kim, D. K. Lee, and K. Kim, Synthesis and characterization of wide range light absorbing poly(dithieno[3,2-b:2',3'-d]thiophene-alt-3,6-bis(thiophen-2-yl)-2,5-di-n-octyl-pyrrolo[3,4-c]pyrrole-1,4-dione) for polymer solar cells, Synth. Met., 164, 64-68 (2013).   DOI
38 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, Toward a rational design of poly(2,7-carbazole) derivatives for solar cells, J. Am. Chem. Soc., 130, 732-742 (2008).   DOI
39 G. Zhang, Y. Fu, L. Qiu, and Z. Xie, Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dione and pyrrolo[3,4-c]pyrrole-1,4-dione-based random polymers for photovoltaic applications, Polymer, 53, 4407-4412 (2012).   DOI
40 H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 3, 649-653 (2009).   DOI
41 H. B. Kim, Y. J. Yoon, J. Jeong, J. Heo, H. Jang, J. H. Seo, B. Walker, and J. Y. Kim, Peroptronic devices: Perovskite-based light-emitting solar cells, Energy Environ. Sci., 10, 1950-1957 (2017).   DOI
42 M. A. K. L. Dissanayake, C. A. Thotawatthage, G. K. R. Senadeera, T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundera, and B. E. Mellander, Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte, J. Photochem. Photobiol. A Chem., 246, 29-35 (2012).   DOI
43 Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI +$I_2$, Sol. Energy, 80, 1483-1488 (2006).   DOI
44 V. Raj and S. Kunnetheeri, Nonconjugated polyelectrolyte as efficient fluorescence quencher and their applications as biosensors: Polymer-polymer interaction, ISRN Anal. Chem., 2014, 1-8 (2014).
45 E. K. Kim, N. K. Shrestha, W. Lee, G. Cai, and S. H. Han, Influence of water-soluble conjugated/non-conjugated polyelectrolytes on electrodeposition of nanostructured $MnO_2$ film for supercapacitors, Mater. Chem. Phys., 155, 211-216 (2015).   DOI
46 W. Shin, N. Sylvianti, M. A. Marsya, D. S. Putri, D. W. Chang, J. Kim, Y. W. Kim, T. D. Kim, S. Yoo, and J. Kim, Cathode modification of polymer solar cells by ultrahydrophobic polyelectrolyte, Mol. Cryst. Liq. Cryst., 635, 6-11 (2016).   DOI
47 W. Li, J. Kang, X. Li, S. Fang, Y. Lin, G. Wang, and X. Xiao, A novel polymer quaternary ammonium iodide and application in quasi-solid-state dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 170, 1-6 (2005).   DOI
48 P. Zhou, Z. Fang, W. Zhou, Q. Qiao, M. Wang, T. Chen, and S. Yang, Nonconjugated polymer poly(vinylpyrrolidone) as an efficient interlayer promoting electron transport for perovskite solar cells, ACS Appl. Mater. Interfaces, 9, 32957-32964 (2017).   DOI
49 H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chem. Mater., 26, 5190-5193 (2014).   DOI
50 K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. De Silva, Dye-sensitized photoelectrochemical cells based on porous $SnO_2/ZnO$ composite and $TiO_2$ films with a polymer electrolyte., Chem. Mater., 11, 2474-2477 (1999).   DOI
51 T. M. W. J. Bandara, M. A. K. L. Dissanayake, and B. E. Mellander, Dye sensitized solar cells with poly(acrylonitrile) based plasticized electrolyte containing $MgI_2$, Electrochim. Acta, 55, 2044-2047 (2010).   DOI
52 O. A. Ileperuma, M. A. K. L. Dissanayake, S. Somasunderam, and L. R. A. K. Bandara, Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes, Sol. Energy Mater. Sol. Cells, 84, 117-124 (2004).   DOI
53 O. A. Ileperuma, G. R. A. Kumara, H. S. Yang, and K. Murakami, Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 217, 308-312 (2011).   DOI
54 K. Yuan, L. Chen, and Y. Chen, Versatile electron-collecting interfacial layer by in situ growth of silver nanoparticles in nonconjugated polyelectrolyte aqueous solution for polymer solar cells, J. Phys. Chem. B, 118, 11563-11572 (2014).   DOI
55 F. C. Krebs, T. Tromholt, and M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale, 2, 873-886 (2010).   DOI
56 J. H. Kang, Y. J. Park, M. J. Cha, Y. Yi, A. Song, K.-B. Chung, J. H. Seo, and B. Walker, Effect of counter-ions on the properties and performance of non-conjugated polyelectrolyte interlayers in solar cell and transistor devices, RSC Adv., 9, 20670-20676 (2019).   DOI
57 G. Zhang, Y. Fu, Z. Xie, and Q. Zhang, Synthesis and photovoltaic properties of new low bandgap isoindigo-based conjugated polymers, Macromolecules, 44, 1414-1420 (2011).   DOI
58 J. L. Bredas, D. Beljonne, V. Coropceanu, and J. Cornil, Charge-transfer and energy-transfer processes in ${\pi}$-conjugated oligomers and polymers: A molecular picture, Chem. Rev., 104, 4971-5003 (2004).   DOI
59 X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Enhanced performance in polymer solar cells by surface energy control, Adv. Funct. Mater., 20, 4381-4387 (2010).   DOI
60 Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer, Adv. Mater., 23, 1679-1683 (2011).   DOI
61 H. Kang, S. Hong, J. Lee, and K. Lee, Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells, Adv. Mater., 24, 3005-3009 (2012).   DOI
62 Y. J. Park , M. J. Cha, Y. J. Yoon, S. Cho, J. Y. Kim, J. H. Seo, and B. Walker, Improved performance in n-type organic field-effect transistors via polyelectrolyte-mediated interfacial doping, Adv. Electron. Mater., 3, 1-7 (2017).
63 H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, and W. Kowalsky, Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers, Appl. Phys. Lett., 96, 2008-2011 (2010).
64 C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y. L. Loo, Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer, Appl. Phys. Lett., 94, 10-13 (2009).
65 C. Duan, K. Zhang, C. Zhong, F. Huang, and Y. Cao, Recent advances in water/alcohol-soluble ${\pi}$-conjugated materials: New materials and growing applications in solar cells, Chem. Soc. Rev., 42, 9071-9104 (2013).   DOI
66 J. H. Lee, Y. J. Park, J. H. Seo, and B. Walker, Hybrid lead-halide polyelectrolytes as interfacial electron extraction layers in inverted organic solar cells, Polymers, 12, 743 (2020).   DOI
67 S. Woo, W. Hyun Kim, H. Kim, Y. Yi, H. K. Lyu, and Y. Kim, 8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer-modified inorganic electron-collecting buffer layers, Adv. Energy Mater., 4, 1-7 (2014).   DOI
68 A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, and A. J. Heeger, Efficient solution-processed small-molecule solar cells with inverted structure, Adv. Mater., 25, 2397-2402 (2013).   DOI
69 W. Lee, J. H. Seo, and H. Y. Woo, Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices, Polymer, 54, 5104-5121 (2013).   DOI
70 C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jenf, and T. C. Wen, Enhanced performance of polymer solar cells using solution-processed tetra-n-alkyl ammonium bromides as electron extraction layers, J. Mater. Chem. A, 1, 2582-2587 (2013).   DOI
71 Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganas, and F. Zhang, Inverted and transparent polymer solar cells prepared with vacuum-free processing, Sol. Energy Mater. Sol. Cells, 93, 497-500 (2009).   DOI
72 C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan, and Y. Cao, Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes, J. Mater. Chem., 20, 2617-2622 (2010).   DOI
73 H. S. Jung and T. Q. Nguyen, Electronic properties of conjugated polyelectrolyte thin films, J. Am. Chem. Soc., 130, 10042-10043 (2008).   DOI
74 S. I. Na, T. S. Kim, S. H. Oh, J. Kim, S. S. Kim, and D. Y. Kim, Enhanced performance of inverted polymer solar cells with cathode interfacial tuning via water-soluble polyfluorenes, Appl. Phys. Lett., 97, 4-7 (2010).