• Title/Summary/Keyword: Non-clustering

Search Result 398, Processing Time 0.023 seconds

Clustering gene expression data using Non -Negative matrix factorization (Non-negative matrix factorization 을 이용한 마이크로어레이 데이터의 클러스터링)

  • Lee, Min-Young;Cho, Ji-Hoon;Lee, In-Beum
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • 마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.

  • PDF

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

FC Approach in Portfolio Selection of Tehran's Stock Market

  • Shadkam, Elham
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.1 no.2
    • /
    • pp.31-37
    • /
    • 2014
  • The portfolio selection is one of the most important and vital decisions that a real or legal person, who invests in stock market, should make. The main purpose of this article is the determination of the optimal portfolio with regard to relations among stock returns of companies which are active in Tehran's stock market. For achieving this goal, weekly statistics of company's stocks since Farvardin 1389 until Esfand 1390, has been used. For analyzing statistics and information and examination of stocks of companies which has change in returns, factors analysis approach and clustering analysis has been used (FC approach). With using multivariate analysis and with the aim of reducing the unsystematic risk, a financial portfoliois formed. At last but not least, results of choosing the optimal portfolio rather than randomly choosing a portfolio are given.

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.

Global Optimization of Clusters in Gene Expression Data of DNA Microarrays by Deterministic Annealing

  • Lee, Kwon Moo;Chung, Tae Su;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The analysis of DNA microarry data is one of the most important things for functional genomics research. The matrix representation of microarray data and its successive 'optimal' incisional hyperplanes is a useful platform for developing optimization algorithms to determine the optimal partitioning of pairwise proximity matrix representing completely connected and weighted graph. We developed Deterministic Annealing (DA) approach to determine the successive optimal binary partitioning. DA algorithm demonstrated good performance with the ability to find the 'globally optimal' binary partitions. In addition, the objects that have not been clustered at small non­zero temperature, are considered to be very sensitive to even small randomness, and can be used to estimate the reliability of the clustering.

Design of the Optimal Fuzzy Prediction Systems using RCGKA (RCGKA를 이용한 최적 퍼지 예측 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Son;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF

Typical Daily Load Profile Generation using Load Profile of Automatic Meter Reading Customer (자동검침 고객의 부하패턴을 이용한 일일 대표 부하패턴 생성)

  • Kim, Young-Il;Shin, Jin-Ho;Yi, Bong-Jae;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1516-1521
    • /
    • 2008
  • Recently, distribution load analysis using AMR (Automatic Meter Reading) data is researched in electric utilities. Load analysis method based on AMR system generates the typical load profile using load data of AMR customers, estimates the load profile of non-AMR customers, and analyzes the peak load and load profile of the distribution circuits and sectors per every 15 minutes/hour/day/week/month. Typical load profile is generated by the algorithm calculating the average amount of power consumption of each groups having similar load patterns. Traditional customer clustering mechanism uses only contract type code as a key. This mechanism has low accuracy because many customers having same contract code have different load patterns. In this research, We propose a customer clustring mechanism using k-means algorithm with contract type code and AMR data.

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • Kim Jin Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF