This dissertation presents the results on two-dimensional Redshift space distortion (hereafter RSD) analyses of the large-scale structure of the universe using spectroscopic data and on improvement of modeling of the RSD effect. RSD is an effect caused by galaxies' peculiar velocity on their clustering feature in observation along the line of sight and is thus intimately connected to the growth rate of the structure in the universe, from which we can test the origin of cosmic acceleration and Einstein's theory of gravity at cosmic scales in the end. However, there are several challenges in modeling precise and accurate RSD effect, such as non-linearities and the existence of an exotic component, e.g. massive neutrino. As part of endeavors for modeling more precise and accurate galaxy clustering in redshift space, this dissertation includes a series of works for this issue. (More detailed descriptions were omitted.)
본 논문은 이동 노드간 클러스터링을 함에 있어 보다 효율적인클러스터링을 제공하고 유지하기 위한 딥러닝의 자율학습에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 새롭게 입력되거나 변경된 데이터가 비교정보에서 오염된 정보로 분류될 경우 기존 분류된 클러스터링으로부터 오염된 정보로 이해되어 군집성을 저하시키는 요인으로 작용 할 수가 있다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 학습 모델을 제시 한다.
본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.
International journal of advanced smart convergence
/
제8권4호
/
pp.34-39
/
2019
Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3239-3267
/
2018
Image and video dehazing is a popular topic in the field of computer vision and digital image processing. A fast, optimized dehazing algorithm was recently proposed that enhances contrast and reduces flickering artifacts in a dehazed video sequence by minimizing a cost function that makes transmission values spatially and temporally coherent. However, its fixed-size block partitioning leads to block effects. The temporal cost function also suffers from the temporal non-coherence of newly appearing objects in a scene. Further, the weak edges in a hazy image are not addressed. Hence, a video dehazing algorithm based on well designed spectral clustering is proposed. To avoid block artifacts, the spectral clustering is customized to segment static scenes to ensure the same target has the same transmission value. Assuming that edge images dehazed with optimized transmission values have richer detail than before restoration, an edge intensity function is added to the spatial consistency cost model. Atmospheric light is estimated using a modified quadtree search. Different temporal transmission models are established for newly appearing objects, static backgrounds, and moving objects. The experimental results demonstrate that the new method provides higher dehazing quality and lower time complexity than the previous technique.
ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.3972-3988
/
2020
Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.
클러스터링은 동일한 클러스터에 속하는 데이타들 간에는 유사도가 크도록 하고 다른 클러스터에 속하는 데이타들 간에는 유사도가 작도록 주어진 데이타를 몇 개의 클러스터로 묶는 것이다. 어떤 대상을 기술하는 데이타는 수치 속성뿐만 아니라 정성적인 비수치 속성을 갖게 되고, 이들 속성값은 관측 오류, 불확실성, 주관적인 판정 등으로 인해서 정확한 값으로 주어지지 않고 애매한 값으로 주어지는 경우가 많다. 본 논문에서는 애매한 값을 퍼지값으로 표현하는 수치 속성과 비수치 속성을 포함한 데이타에 대한 비유사도 척도를 제안하고, 이 척도를 이용하여 퍼지값을 포함한 데이타에 대하여 퍼지 클러스터링하는 방법을 소개한 다음, 이를 이용한 실험 결과를 보인다. Abstract The objective of clustering is to group a set of data into some number of clusters in a way to minimize the similarity between data belonging to different clusters and to maximize the similarity between data belonging to the same cluster. Many data for real world objects consist of numeric attributes and non-numeric attributes whose values are fuzzily described due to observation error, uncertainty, subjective judgement, and so on. This paper proposes a dissimilarity measure applicable to such data and then introduces a fuzzy clustering method for such data using the proposed dissimilarity measure. It also presents some experiment results to show the applicability of the proposed clustering method and dissimilarity measure.
화자들 사이의 워핑특성을 알아보기 위해 비정형 워핑함수를 도출하는 실험을 수행하였다. 이를 위해 모음의 MFCC와 LP 스펙트럼을 이용하여 화자별, 음소별 대표 스펙트럼을 선정한 다음 음소별 기준 스펙트럼을 선택하였다. 기준 스펙트럼과 대표 스펙트럼을 스펙트럼의 전체대역에서 DTW로 비교하여 화자별 워핑함수를 구한 다음, 이들을 clustering함으로써 비정형 워핑함수의 집합을 도출하였다. 이 함수집합에서 남성화자와 여성화자의 함수들이 각각 구간선형함수와 파워함수와 유사함을 관찰할 수 있었으며, 이를 근거로 이 함수들을 조합한 하이브리드 워핑함수집합을 정의하였다. 음소단위의 인식 실험을 통하여 새로 정의된 함수들의 인식률을 시험하였으며 두 함수집합 모두에서 개선된 인식률을 얻을 수 있었다.
본 연구는 음악의 내용에 해당하는 음렬 패턴을 대상으로 분류자질을 선정하고 이를 기준으로 음렬간 유사도를 측정한 후 음렬간 군집을 형성하였다. 이는 내용기반음악검색 시스템에서 유사한 음렬을 검색 결과로 제시함으로써 이용자 탐색을 용이하게 하기 위함이다. 실험문헌집단으로는 $\ulcorner$A Dictionary of Musical Themes$\lrcorner$에 수록된 주제소절의 kern 형식 파일을 사용하였으며, 음렬 처리도구로는 Humdrum Toolkit version 1.0을 사용하였다. 음렬의 분절 여부와 시작 위치에 따른 네 가지 형태의 유사도 행렬을 대상으로 계층적 클러스터링 기법을 사용하여 유사한 음렬간 군집을 형성하였다. 이들 결과에 대한 평가는 외적 기준이 되는 수작업 분류표가 있는 경우 WACS 척도를 사용하였고, 음렬 내 임의의 위치에서부터 시작한 음렬을 대상으로 한 경우, 클러스터링 결과로부터 얻어낸 군집 내 공통 자질 패턴 분포를 통해 내적 기준을 마련하여 평가하였다. 평가 결과에 의하면 음렬의 시작 위치와 무관하게 분절한 자질을 사용하여 클러스터링한 결과가 그렇지 않은 것에 비해 뚜렷한 차이를 보이며 높게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.