• Title/Summary/Keyword: Non-circular shape

Search Result 91, Processing Time 0.031 seconds

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Full face recognition using the feature extracted gy shape analyzing and the back-propagation algorithm (형태분석에 의한 특징 추출과 BP알고리즘을 이용한 정면 얼굴 인식)

  • 최동선;이주신
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.63-71
    • /
    • 1996
  • This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.

  • PDF

potential of Noncircular Fiber as Reinforcing Material l. C-type carbon fiber

  • Boh, Shim-Hwan;Rhee Bo sung
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.817-822
    • /
    • 1994
  • The reinforcing effect of C-shape carbon fiber was investigated as comparing to typical round-shape fiber with similar properties. The results show that C-shape fiber reinforced materials have better in almost all aspects of mechanical properties, or 218% in flexural strength, 223% flexural modulus, 157% interlamina shear strength, 227% impact strength, 184% transverse flexural strength and so on. Also in damping characteristics considerably concerned with fatigue life, friction/wear coefficient of a material, C-CF/EP had about 185% greater. In this research, we present the potential of non-circular fiber reinforcing materials by C-shape carbon fiber.

  • PDF

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

The Evaluation of Thin Pressure Vessel′s Internal Defects by Laser Shearography (레이저 전단 간섭계를 이용한 압력용기의 내부 결함 평가)

  • 장경영;장석원;현민관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.929-933
    • /
    • 2003
  • Internal defects of thin pressure vessel used in the power plants or the chemical plants may be created and grow due to corrosion or creep fatigue to reduce the strength and cause critical failure during operation. Therefore it is very important to detect this defect at the early stage. For this purpose, non-destructive, non-contact and highly sensitive method should be considered for on-line application. In this paper, a laser shearographic interferometer is applied to inspect circular defects and notch defects existed inside of thin pressure vessel under the presence of pressure up to 3 times of atmospheric pressure. The influences of the defect shape and size as well as the internal pressure to the characteristic pattern in the shearography fringe are investigated, and the quantitative evaluation of the defect size is tried. Also the experimental results are compared with the destructive test results to show the applicability of this method to the quantitative evaluation of internal defects in the thin pressure vessel.

  • PDF

Development of Set-up Model for Elongation Control in Steel Skin Pass Mill (조질압연에서의 연신율제어를 위한 set-up 모델 개발)

  • 이원호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The mathematical set-up model was developed to reduce the mechanical property deviation in annealed and slightly rolled steel strip. The mechanical peculiarities of skin pass rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation zone are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The strip restricted deformation zone near the neutral point is also considered. It was revealed that the new model has better accuracy than present regression model by statistical analysis with actual mill rolling data.

  • PDF

Development of set-up model for elongation control in steel skin pass mill (강판의 연신율제어를 위한 Set-Up 모델 개발)

  • 이원호;이규택;류율리
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.317-317
    • /
    • 2000
  • The mathematical set-up model was developed to reduce the mechanical property deviation in annealed and slightly rolled steel strip. The mechanical peculiarities of temper rolling process, such as high friction value and non-circular contact arc, Low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation zone are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The restricted deformation Bone near the neutral point is also considered. It was revealed that the new model has better accuracy than present regression model by statistical analysis with actual mill rolling data.

  • PDF

Effects of Partially Distributed Step Load on Dynamic Response of the Plane Circular Arches (분포하중이 평면 원호 아치의 동적 응답에 미치는 영향)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.89-96
    • /
    • 2001
  • In this study non-linear finite element analysis of dynamic response of steel arch under partially distributed dynamic load was discussed. Material and geometric non-linearities were included in finite element formulation and steel behavior was modeled with Von Mises yield criteria. Either radial or vertical dynamic load was dealt in numerical examples. Normal arch and arch with maximum shape imperfection of L/11,000 were studied. The analysis results showed that maximum displacement at the center of arch was occurred when 70% of arch span was loaded. The maximum displacement at a quarter of arch span was occurred when 50% of arch span was loaded and the displacement was larger than that of center of arch. Ratio of arch rise to arch span within 0.2∼-.3 seems to be appropriate for arch under radial or vertical load.

  • PDF

Development of Nonlinear Dynamic Program for Buckling Analysis of Plane Circular Arches (평면 원호아치의 좌굴해석을 위한 동적 비선형해석 프로그램의 개발)

  • 허택녕;오순택
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.69-81
    • /
    • 1994
  • This paper summarizes a dynamic analysis of the shallow circular arches under dynamic loading, considering the geometric nonlinearity. The major emphasis is placed on the development of computer program, which is utilized for the analysis of the nonlinear dynamic behavior and for the evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and a finite element analysis procedure is used to solve the dynamic equation of motion. A circular arch subject to normal step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of arches are estimated using the non-dimensional time, load and shape parameters and the results are also compared with those from the linear analysis. It is found that geometric nonlinearity plays and important role in the analysis of shallow arches and the probability of buckling failure is getting higher as arches become shallower.

  • PDF