• 제목/요약/키워드: Non-cement

검색결과 523건 처리시간 0.027초

Antifungal Activities of Isothiazoline/Cabamate based Organic Antifungal Agent Activated-Cement Mortars (AACM)

  • Do Jeong-Yun;So Hyoung-Seok;Soh Yang-Seob
    • KCI Concrete Journal
    • /
    • 제14권4호
    • /
    • pp.171-177
    • /
    • 2002
  • Antifungal agents are used to impart antibacterial or bactericidal properties to commodities and various articles used in industries and can be classified into two broad groups i.e organic and inorganic. Inorganic antifungal agents comprise of Ag, Zn, or Cu, etc. These elements tend to exhibit high level of antifungal activities, non-uniform dispersion in substrates, and have poor properties in expensive and cheap adhesiveness. In this study, the organic antifungal agent was used for the purpose of investigating the antifungal activity of antifungal agent activated-cement mortar (AACM) on the aspergilus niger of various fungus which can be easily discovered in the interiors and exteriors of buildings. In addition, an experiment on the basic physical properties of AACM such as compressive and flexural strength was carried out. The conclusion of this investigation revealed that a dosage increase of antifungal agent exhibits a high inhibitory effect on the aspergilus niger, and although there is a slight decrease in the strength of AACM, the strength of AACM was almost equal to that of inactivated cement mortar.

  • PDF

Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals

  • Lee, Hyung-Joo;Kim, Seung-Ki;Lee, Heon-Seok;Kang, Yong-Hak;Kim, Woosuk;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.311-320
    • /
    • 2019
  • In this study, the effect of cellulose nanocrystals (CNCs) on the fire resistance properties of fiber-reinforced cement composites was investigated. The main variables were CNCs content (0.4, 0.8 and 1.2vol.% compared with cement), steel fiber ratio, and exposure temperature (100, 200, 400, 600 and 800℃). The fire resistance properties, i.e., residual compressive strength, flexural strength, and porosity, were evaluated in relation with the exposure temperature of the specimens. The CNCs suspensions were prepared to composited dispersion method of magnetic stirring and ultra-sonication. CNCs are effective for increasing the compressive strength at high temperatures but CNCs do not seem to have a significant effect on flexural reinforcement. Porosity test result showed CNCs reduce the non-hydration area inside the cement and promote hydration.

친환경 무시멘트 황토결합재의 적용가능성에 관한 연구 (A study on possibility of application of non-cement Hwang-to binder for Environment-friendly)

  • 황혜주;강남이
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 2008
  • Due to the recent environmental problems, lots of studies on the solutions to reduce the environmental pollutions are on the way. In the field of construction, concrete that we are currently consuming approximately 1 ton each year is the most common and cheap building material. We must cut down on this preoccupied use of this material and develop an alternative material as recommended by the late environmental standards. In this regard, this study propose the 'yellow soil' as the main substance that composes the final state, 'yellow soil concrete'. This study also aims to analyze the physical and chemical performances of this concrete mixed with the yellow soil by comparing it with the cement and assesses the possibility of its application to the cement. The results of the experiment shows that, assuming the solidity of the cement concrete to be around $210kg/cm^2$ (20.58MPa), the solidity of the yellow soil combined material may be around 45%~55% in terms of the range of W/B use, 200 to 400 in the per unit fission amount and less than 2% in the addition proportion of admixing agents. But the scope of the optimal concoction amount of the yellow soil concrete should better be limited as following. 40% to 50% in W/B, 300 to 400 in the per unit fission amount and less than 2% in the addition of admixing agents.

An Experimental Study on Evaluation of Compressive Strength in Cement Mortar Using Averaged Electromagnetic Properties

  • Kwon, Seung-Jun;Maria, Q. Feng;Park, Tae-Won;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.25-32
    • /
    • 2009
  • A non-destructive testing (NDT) method for evaluating physical properties of concrete including the compressive strength is highly desirable. This paper presents such an NDT method based on measurement of electromagnetic (EM) properties of the material. Experiments are carried out on cement mortar with different water/cement (W/C) ratios. Their EM properties including the conductivity and the dielectric constant are measured at different exposure conditions and curing periods over a wide frequency range of the EM wave. The compressive strength of these specimens is also tested. It is found that both the conductivity and the dielectric constant increase as the W/C ratio decreases and the curing period increases, which lead strength development in the specimens. A linear correlation is observed between the averaged EM properties over the 5 to 20 GHz frequency range and the measured compressive strength, demonstrating the effectiveness of the EM property-based NDT method in evaluating strength of OPC mortar.

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

The Role of Bone Cement Augmentation in the Treatment of Chronic Symptomatic Osteoporotic Compression Fracture

  • Kim, Hyeun-Sung;Kim, Sung-Hoon;Ju, Chang-Il;Kim, Seok-Won;Lee, Sung-Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권6호
    • /
    • pp.490-495
    • /
    • 2010
  • Objective : Bone cement augmentation procedures such as percutaneous vertebroplasty and balloon kyphoplasty have been shown to be effective treatment for acute or subacute osteoporotic vertebral compression fractures. The purpose of this study was to determine the efficacy of bone cement augmentation procedures for long standing osteoporotic vertebral compression fracture with late vertebral collapse and persistent back pain. Methods : Among 278 single level osteoporotic vertebral compression fractures that were treated by vertebral augmentation procedures at our institute, 18 consecutive patients were included in this study. Study inclusion was limited to initially, minimal compression fractures, but showing a poor prognosis due to late vertebral collapse, intravertebral vacuum clefts and continuous back pain despite conservative treatment for more than one year. The subjects included three men and 15 women. The mean age was 70.7 with a range from 64 to 85 years of age. After postural reduction for two days, bone cement augmentation procedures following intraoperative pressure reduction were performed. Imaging and clinical findings, including the level of the vertebra involved, vertebral height restoration, injected cement volume, local kyphosis, clinical outcome and complications were analyzed. Results : The mean follow-up period after bone cement augmentation procedures was 14.3 months (range 12-27 months). The mean injected cement volume was 4.1 mL (range 2.4-5.9 mL). The unipedicular approach was possible in 15 patients. The mean pain score (visual analogue scale) prior to surgery was 7.1, which decreased to 3.1 at 7 days after the procedure. The pain relief was maintained at the final follow up. The kyphotic angle improved significantly from $21.2{\pm}4.9^{\circ}$ before surgery to $10.4{\pm}3.8^{\circ}$ after surgery. The fraction of vertebral height increased from 30% to 60% after bone cement augmentation, and the restored vertebral height was maintained at the final follow up. There were no serious complications related to cement leakage. Conclusion : In the management of even long-standing osteoporotic vertebral compression fracture for over one year, bone cement augmentation procedures following postural reduction were considered safe and effective treatment in cases of non-healing evidence.

The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.144-149
    • /
    • 2016
  • PURPOSE. The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS. The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS. Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION. The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.

Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

  • Kim, Hyun-Dong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Hee-Sun;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.104-109
    • /
    • 2013
  • PURPOSE. Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiberreinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS. Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and three surface treatments (no treatment; air drying; drying at $38^{\circ}C$). Every specimen were bonded with dual-curing resin cement (Variolink N) and stored in distilled water for 24 hours at $37^{\circ}C$. Shear-bond strength (MPa) between the fiber post and the resin cement were measured using universal testing device. The data were analyzed with 1-way ANOVA and by multiple comparisons according to Tukey's HSD (${\alpha}$=0.05). The effect of surface treatment, fiber post type, and the interactions between these two factors were analyzed using 2-way ANOVA and independent sample T-tests. RESULTS. Silanization of the FRC Postec Plus significantly increased bond strength compared with the respective non-treated control, whereas no effect was determined for the D.T. Light Post. Heat drying the silane coupling agent on to the fiberreinforced post did not significantly improve bond strength compared to air-syringe drying. CONCLUSION. The bond strength between the fiber-reinforced post and the resin cement was significantly increased with silanization in regards to the FRC Postec Plus post. Bond strength was not significantly improved by heat activation of the silane coupling agent.

Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

  • Lim, Myung-Jin;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods: The specimens (dimension: $2mm{\times}2mm{\times}25mm$) of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results: The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions: The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

와연형태(窩緣形態)에 따른 와연누출(邊緣漏出)에 관(關)한 실험적(實驗的) 연구(硏究) (A STUDY ON THE MARGINAL LEAKAGE OF RESTORATIONS WITH DIFFERENT CAVOSURFACE MARGINS)

  • 신한주;최호영;민병순;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제12권1호
    • /
    • pp.119-129
    • /
    • 1986
  • The purpose of this study was to evaluate the marginal leakage of glass ionomer cement with different cavosurface margins. 192 class V cavities were prepared on freshly extracted non-carious teeth and glass ionomer cement were inserted according to the manufacturer's instructions. Cavity preparations for this investigation were performed in four groups. The experimental specimens were made by packing the glass ionomer cement (Fuji Ionomer Type II G-C Co. Japan) into the prepared 192 cavities of four groups with different modes: Group I. - The 48 cavities with $90^{\circ}$ butt-joint cavosurface preparation and restored with glass ionomer cement. Group II. - The 48 cavities with butt-joint preparation modified by $135^{\circ}$ beveling the cavosurface in the dentin and restored with glass ionomer cement. Group III. - The 48 cavities with butt-joint preparation modified by cutting a chamfer in the dentin and restored with glass ionomer cement. Group IV. - The same 48 cavities as group I, and overfilled with glass ionomer cement beyond the cavosurface angle. And four groups above described divided into three subgroups by means of conditioning the cavity walls: Control group. - Glass ionomer cement filled in the prepared 64 cavities after being cleaned with a stream of tap water. Phosphoric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% phosphoric acid. Citric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% citric acid. All 192 specimens were immersed in the 2.0% basic fuchsin solution and subjected to thermal stress at one-minute intervals ($4{\pm}2^{\circ}C$ to $60{\pm}2^{\circ}C$) for 70 minutes before exposure to the dye. The specimens were sectioned ecclesiologically through the center of the restorations for different periods of immersion time, 24 hours, 7 days, 14 days 30 days. The sections were examined under a stereoscopic microscope. The results were as follows: 1. The degree of marginal leakage in group II and III was greater than that in group I and IV. 2. The degree of marginal leakage in phosphoric acid treatment group was similar with that in control group. 3. The degree of marginal leakage in citric acid treatment group was less than that in control group. 4. In all groups, the degree of marginal leakage in phosphoric acid treatment group was greater than that in citric acid treatment group. 5. There is no statistical difference of the degree of marginal leakage according to the immersion time in the dye solution.

  • PDF