• Title/Summary/Keyword: Non-building Structures

Search Result 379, Processing Time 0.025 seconds

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Analysis on mechanical behavior of dovetail mortise-tenon joints with looseness in traditional timber buildings

  • Li, Yizhu;Cao, Shuangyin;Xue, Jianyang
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.903-921
    • /
    • 2016
  • To study the effect of looseness on mechanical behavior of dovetail mortise-tenon joints, five dovetail mortise-tenon joints, including one intact joint and four loose joints, were fabricated and tested under cycle lateral loadings, and non-linear finite element models using the software ABAQUS were also developed. The effects of looseness on stress distribution, rotational stiffness and bearing capacity of joints were studied based on the analysis of test and simulation results. The results indicate that the hysteretic loops are anti-Z-shaped and present typical characteristics of pinching and slippage, the envelop curves of joints are classified as following two stages: elastic and strengthening stage. The peak stress, rotational stiffness and bearing capacity of joints were reduced due to looseness. The moment-rotation theoretical model of intact joint was simplified in terms of the relation of construction dimensions for buildings, and the moment-rotation theoretical model considering the effect of looseness was proposed and validated.

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.