• Title/Summary/Keyword: Non-building Structures

Search Result 379, Processing Time 0.031 seconds

Computer Analysis of the Church of Notre-Dame de Lamourguier

  • Hong, Seong Woo
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • For more than a hundred years, art and architectural historians, architects, and engineers interested in structure have attempted to interpret Gothic architecture, one of the most technologically complex and sophisticated structural systems in history. Indigenous Gothic, however, such as non-vaulted Gothic in the Lower Languedoc region of southern France, has been largely ignored. This study intends to analyze the Gothic non-vaulted nef unique (aisleless) structures of Lower Languedoc which have never been scientifically tested, and to provide as comprehensive an explanation as possible of the way in which these non-vaulted buildings work. In order to achieve this goal, this paper is to examine, by means of finite element computer analysis, a selected example of an existing building. The church of Notre-Dame de Lamourguier, the earliest surviving example of a Gothic nef unique with wide-span diaphragm arches in Lower Languedoc, is selected. Thus, hypothetical models of diaphragm arch buildings and an existing building as a complete structural system were scientifically analyzed in order to provide a comprehensive explanation of how the non-vaulted nef unique system works. The result of the analysis, allows us better to understand the structural behavior of this type of masonry arcuated system and the processes involved in the design and construction of medieval buildings.

A Study on the Change of Physical Capability of Waterproofing Layer after the Application of Static Load and Moving Load to a Non-Exposed Type Waterproofing Layer (비노출 방수층에 작용하는 정하중과 동하중 작용 후의 방수층 물성변화에 관한 연구)

  • Seon, Yun-Suk;Kim, Jin-Seong;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.141-145
    • /
    • 2007
  • The part in the structure that is most affected by changes of external temperature is the protective concrete layer that protects a waterproofing layer. Also, the waterproofing layer that is situated under or on the back of such a protective concrete layer is affected by temperature and the behavior of the protective concrete layer under the condition of consolidation or close adhesion. In particular, in many cases, the damage is serious mainly around the projection (such as a parapet), crack, and joint (expansion joint). However, there is no proper way of examining again the non-exposed waterproofing layer once it has been constructed. Therefore, there is an assessment only on the physical property of materials and the capability of the layer in construction, and there is no actual assessment in consideration of its environmental condition or the condition of the use of buildings after construction. Therefore, in order to create more pleasant buildings and to enhance the durability of structures, this study conducts research into the change of capability of non-exposed waterproofing material after the application of a static load and moving load on the waterproofing layer situated under or on the back of protective concrete.

  • PDF

Comparison of the Fire Resistance Performance of Firestop Systems on Non-Metallic Pipes, Based on the Type of Through-Penetration Sleeve Used (비금속관 설비관통부의 슬리브 종류에 따른 내화성능 비교)

  • Jeong, A-Yeong;Choi, Hong-Beom;Park, Jin-O;Lee, Hyung-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.301-302
    • /
    • 2023
  • In this study, we aimed to identify changes in fire resistance according to the type of sleeves used for pipe penetrations and to examine their accreditation of fire resistance performance and use them as basic data. The test results of fire resistance according to the type of sleeve used in non-metallic pipe facilities showed that the temperature on the support side was higher for sleeves with higher thermal conductivity. For the temperature on the surface of the pipes, in the case of galvanized steel plates, steel pipes, and structures without sleeves, the highest temperature was observed after the expansion of the firestop material for 46 to 53 minutes and then decreased. PVC sleeves showed a steady increase in temperature until 53 minutes, after which the temperature did not increase further. In addition, for non-metallic pipes, the effect of the type of sleeve on fire resistance is considered to be insignificant because the lower part (heating direction of the furnace) under the support structure is cut off to block the heat during the two-hour fire resistance test.

  • PDF

An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.109-126
    • /
    • 2011
  • The inelastic earthquake response of non-symmetric, braced steel buildings, designed according to the EC3 (steel structures) and EC8 (earthquake resistant design) codes, is investigated using 1, 3 and 5-story models, subjected to a set of 10, two-component, semi-artificial motions, generated to match the design spectrum. It is found that in these buildings, the so-called "flexible" edge frames exhibit higher ductility demands and interstory drifts than the "stiff" edge frames. We note that the same results were reported in an earlier study for reinforced concrete buildings and are the opposite of what was predicted in several other studies based on the over simplified, hence very popular, one-story, shear-beam type models. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. In a follow up paper, a design modification will be introduced that can lead to a more uniform distribution of ductility demands in the elements of all building edges. This investigation is another step towards more rational design of non-symmetric steel buildings.

A parametric study on seismic fragility analysis of RC buildings

  • Nagashree, B.K.;Ravi, Kumar C.M.;Venkat, Reddy D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.629-643
    • /
    • 2016
  • Among all the natural disasters, earthquakes are the most destructive calamities since they cause a plenty of injuries and economic losses leaving behind a series of signs of panic. The present study highlights the moment-curvature relationships for the structural elements such as beam and column elements and Non-Linear Static Pushover Analysis of RC frame structures since it is a very simplified procedure of non-linear static analysis. The highly popular model namely Mander's model and Kent and Park model are considered and then, seismic risk evaluation of RC building has been conducted using SAP 2000 version 17 treating uncertainty in strength as a parameter. From the obtained capacity and demand curves, the performance level of the structure has been defined. The seismic fragility curves were developed for the variations in the material strength and damage state threshold are calculated. Also the comparison of experimental and analytical results has been conducted.

Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System (초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델)

  • Shin, Jiuk;Jeon, Jong-Su;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

Free Vibration Analysis of Plane Structures with Isogeometric Concept (등기하개념을 이용한 평면구조물의 자유진동해석)

  • Lee, Sang-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.171-182
    • /
    • 2019
  • Isogeometric concept is introduced to carry out free vibration analysis of plane structures. The geometry of structures is represented by using non-uniform rational B-spline surface (NURBS) and its basis function is consistently used in the formulation of plane stress element. In addition, multi-patch strategy is introduced to deal with the openings in building. The performance of the present isogeometric plane stress element is investigated by using five numerical examples. From numerical results, it is found to be that the isogeometric concept can successfully identify reliable natural frequencies and associated mode shapes of plane structures with/without openings in efficient way.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.