• Title/Summary/Keyword: Non-aqueous

Search Result 530, Processing Time 0.031 seconds

Analysis of aqueous environment iron dissolution in different conditions (조건의 변화에 따른 수중 환경 내에서의 철 용해 분석)

  • Bae, Yeun-Ook;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.807-810
    • /
    • 2008
  • Permeable reactive barriers containing Zero-valent iron (ZVI) are used to purify ground-water contaminants. One of the representative contaminant is trichloroethylene (TCE). ZVI can act as a reducing agent of TCE. When ZVI is oxidized to Ferric iron, TCE reduced to Ethene, which is non-harmful matter. As a ZVI becomes ferric iron, the reducing effect decreases and iron becomes unavailable. So, constant reduction of TCE requires the regular supply of reducing agent. So, we use Iron-reducing bacteria(IRB) to extend the TCE degrading ability. We perform three experiment DI water, DI water with medium, and DI water with medium and IRB. By the experiment we try to found the dissolve ability.

  • PDF

Effect of Gamma Irradiation on the Growth and Patulin Production of Penicillium griseofulvum in an Apple Model System

  • Yun, Hye-Jeong;Lim, Sang-Yong;Yang, Su-Hyung;Lee, Woo-Yiel;Kwon, Joong-Ho;Lim, Byung-Lak;Kim, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.723-727
    • /
    • 2008
  • The effect of gamma irradiation on the prevention of breeding a patulin-producing mold and reducing patulin content was evaluated in an apple model system. Penicillium griseofulvum, a patulin-producing standard mold strain was artificially inoculated into apples and a gamma irradiation was performed. The $D_{10}$-values of the conidia of P. griseofulvum in an aqueous suspension and the apple model system were calculated at 0.28 and 0.48 kGy, respectively. The viable cell counts of the inoculated conidia in the apples showed 2 decimal point reductions at a dose of 1 kGy. Breeding and growth of the survived conidia was prevented during 10 weeks of post-irradiation storage period, especially at $4^{\circ}C$. The concentration of patulin in the non-irradiated apples was gradually increased and reached about 950 ppm at $25^{\circ}C$ and 410 ppm at $4^{\circ}C$, but the production of patulin was not observed during storage after 1 kGy of gamma irradiation.

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli (환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구)

  • Suh, B.T.;JANG, Y.K.;Kim, D.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

Studies on Pharmaceutical Quantitative Analysis by means of Non-aqueous Titration Method (I) Isolative Determination of Mixed Weak Basic Chemicals. (비수적정법을 이용한 약품분석 연구 (제1보) 약염기성혼합약품의 분리정량법에 대하여)

  • 고인석;김재백;최병기
    • YAKHAK HOEJI
    • /
    • v.5 no.1
    • /
    • pp.20-23
    • /
    • 1960
  • The study of the isolative determination of the mixed weak bases of INAH and NA-Pas potentimetrically considering the properties of solvents for the INAH and Na-PAS, dielectric constant and solvative properties of solvents are described. The methanol: dioxan (4:1) and glacial acetic acid: dioxan (4:1) are studied first as the mixed solvent, using the N/10 perchloric acid and glacial acetic acid solution as the titrant. The authors found that there is no inflection on INAH with the methanol: dioxan solvent system and on Na-PAS at glacial acetic acid dioxan solvent system. By applying methanol glacial acetic acid dioxan (1:1:1) solvent system, Na-PAS and INAH were successfully determined isolatively from the mixed sample, showing the distinguished inflections respectively as shown in the titration curves in figures 3 and 4. It is found that this method could save considerable time for the isolative determination of the mixed sample of week bases as Na PAS and INHA which were quite difficult to be determined by the present routine at control laboratory.

  • PDF

Nanodiamonds Conjugated with Nonsteroidal Anti-inflammatory Drugs for Transdermal Delivery

  • Rhee, Changkyu;Puzyr, Alexey P.;Burov, Andrey E.;Burova, Olga G.;Kim, Whungwhoe;Bondar, Vladimir S.
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.459-465
    • /
    • 2018
  • Most commercially available detonation nanodiamonds (DNDs) require further processing to qualify for use in biomedical applications, as they often contain many impurities and exhibit poor dispersibility in aqueous media. In this work, DNDs are modified to improve purity and impart a high colloidal stability to the particles. The dispersive and adsorption properties of modified DNDs are evaluated in terms of the suitability of DNDs as carriers for non-steroidal anti-inflammatory drugs (NSAIDs) in transdermal delivery. The study of adsorption on strongly positively and strongly negatively charged DNDs showed their high loading capacity for NSAIDs, and a pronounced relationship between the drugs and the particles' charges. Experiments on long-term desorption carried out with DND/NSAID complexes indicate that the nanoparticles exert a sustained effect on the drug release process.

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

Solvent Effects on the Solvolysis of 2-Aryl-1,1-dimethylethyl Bromides

  • 황영호;김성홍;지종기;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.349-353
    • /
    • 1998
  • Solvolysis rates of substituted 2-aryl-1,1-dimethylethyl bromides (1) were determined in a variety of solvents such as aqueous mixtures of ethanol, acetone, 2,2,2-trifluoroethanol, and also mixtures of ethanol and TFE at 25 ℃, 35 ℃, and 45 ℃. The solvent effects were analyzed in terms of Winstein-Grunwald equation. The solvent effects of 1-4-MeO failed to give a single linear correlation against either Y or YCl (YBr), but exhibited a wide split pattern which could not be related to the solvent nucleophilicity. On the other hand 1-4-CH3 and 1-H gave a fairly good linearity. In the case of 1-4-MeO, a fairly good linearity was observed against YΔ defined from the solvolysis of 4-methoxyneophyl tosylate. It is assumed that resonance interaction between reaction site and aryl-π-system operates to give charge delocalization regardless of the different solvolysis mechanisms. The Hammett-Brown treatment of the solvolytic rate constant of compounds 1 was obtained non-linear two separated lines of - 1.06 to - 1.46, suggesting of mechanistic changeover from kc-ks to kΔ on going from electron-withdrawing to electron-donating substituents as a basis of 4-CH3 group.

Green Synthesis of Nanoparticles Using Extract of Ecklonia Cava and Catalytic Activity for Synthetic Dyes

  • Kim, Beomjin;Song, Woo Chang;Park, Sun Young;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1171-1184
    • /
    • 2020
  • The green synthesis of inorganic nanoparticles (NPs) using biomaterials has garnered considerable attention in recent years because of its eco-friendly, non-toxic, simple, and low-cost nature. In this study, we synthesized NPs of noble metals, such as Ag and Au using an aqueous extract of a marine seaweed, Ecklonia cava. The formation of AgNPs and AuNPs was confirmed by the presence of surface plasmon resonance peaks in UV-Vis absorption spectra at approximately 430 and 530 nm, respectively. Various properties of the NPs were evaluated using characterization techniques, such as dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Phytochemicals in the seaweed extract, such as phlorotannins, acted as both reducing and stabilizing agents for the growth of the NPs. The green-synthesized AgNPs and AuNPs were found to exhibit high catalytic activity for the decomposition of organic dyes, including azo dyes, methylene blue, rhodamine B, and methyl orange.

A Study on the Characteristics of Fenton Oxidation of Bisphenol A and Nitrobenzene (비스페놀A와 니트로벤젠의 펜톤 산화분해 특성)

  • Bae, Su-Jin;Kwon, Hee-won;Kim, Ji-young;Hwang, In-Seong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1005-1014
    • /
    • 2021
  • Organic contaminants can be released into water environments due to chemical accidents and exist as dissolved and non-aqueous phase liquids (NAPL). Fenton oxidation was tested for bisphenol A and nitrobenzene as model organic contaminants in dissolved and NAPL states. Fenton oxidation was successfully applied for both of the dissolved and NAPL states of the two pollutants and the results indicated that a quick treatment was needed to reduce the risk from a chemical accidents instead of carrying out oxidation after the contaminants dissolve in water. A set of Fenton reactions were tested under seawater conditions because chemical accidents often occurs in the ocean. Chloride ions act as radical scavengers and inhibit Fenton oxidation. The reaction rate is inversely proportional to salt contents and the reduced reaction rate can be compensated by increasing the quantity of the oxidizing agents. The current study showes that Fenton oxidation could be applied as a quick treatments for organic contaminant in dissolved and NAPL state organic contaminants released as a result of leaks or chemical accidents.