• Title/Summary/Keyword: Non-acoustic sensor

Search Result 61, Processing Time 0.027 seconds

Application of a Fiber Fabry-Pérot Interferometer Sensor for Receiving SH-EMAT Signals (SH-EMAT의 신호 수신을 위한 광섬유 패브리-페롯 간섭계 센서의 적용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-P$\acute{e}$rot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

A Study on a Low Power Underwater Communication Modem for Implementation of Underwater Sensor Networks (수중 센서 네트워크를 위한 저전력 수중 통신 모뎀 연구)

  • Choi, Yong-Woo;Hwang, Jun Hyeok;Park, Dong Chan;Kim, Suk Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.268-273
    • /
    • 2015
  • Recently many countries are researching actively underwater sensor networks for securing ocean resources and changes of ocean environment in all over the world. Current the commercial modem are not suitable because it has characteristics of long distance, higher price, larger power consumption with the special object mainly. In this paper, a low power and compact underwater communication modem which is suitable for underwater sensor networks is implemented. It is comprised by using a simple analog circuit for non-coherent BFSK modulation method, ultra low power MCU and orthogonal codes with a less operation and a simple implementation. It was experimented an underwater communication using our modem in a water tank and open sea farms. It communicates fewer than $10^{-4}$ bit error rate.

Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1104-1111
    • /
    • 2011
  • This paper investigates the filtered velocity feedback(FVF) controller for the reduction of the acoustic power radiated from a clamped beam. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be sorted out. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function(OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide bandbelow the tuning mode of the FVF controller.

Study on Development of Insulation Degradation Diagnosis System for Electrical Transformer (변압기 절연열화진단 시스템개발에 관한 고찰)

  • 김이곤;유권종;김서영;조용섭;박봉서;최시영;심상욱
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.139-144
    • /
    • 2001
  • Insulation aging diagnosis system provides early warning regarding electrical equipment defect. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. Since relations of insulation aging and partial discharge dynamics are non-linear, it is very difficult to provide early warning in an electrical equipment. In this paper, we propose the design method of insulation aging diagnosis system that use a magnetic wave and acoustic signal to diagnoses an electrical equipment. Proposed system measures the partial discharge on-line from DAS(Data Acquisition System) and acquires 2D patterns from analyzing it. For filtering the noise contained in sensor signals we used ICA algorithms. Using this data, design of the neuro-fuzzy model that diagnoses an electrical equipment is investigated. Validity of the new method is asserted by numerical simulation.

  • PDF

Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.377-383
    • /
    • 2011
  • This paper reports the filtered velocity feedback (FVF) controller to reduce the acoustic power from clamped beams. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be resolved. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function (OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide band below the tuning mode of the FVF controller.

  • PDF

An Analysis of Partial Discharge signal Using Wavelet Transforms (웨이블렛 변환을 이용한 부분 방전 신호 분석)

  • 박재준;장진강;임윤석;심종탁;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.169-172
    • /
    • 1999
  • Recently, the wavelet transform has been a new and powerful tool for signal processing. It is more suitable specially for the feature extraction and detection of non-stationary signals than traditional methods such as, the Fourier Transform(FT), the Fast Fourier Transform(FFT) and the Least Square Method etc. because of the characteristic of the multi-scale analysis and time-frequency domain localization. The wavelet transform has been developed for the analysis of PD pulse signal to raise in the progress of insulation degradation. In this paper, the wavelet transform was applied to one foundational method for feature extraction. For the obtain experimental data, a computer-aided partial discharge measurement system with a single acoustic sensor was used. If we are applying to the neural network method the accumulated data through the extracted feature, it is expected that we can detect the PD pulse signal in the insulation materials on the on-line.

  • PDF

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Defect Monitoring In Railway Wheel and Axle

  • Kwon, Seok-Jin;Lee, Dong-Hyoung;You, Won-Hee
    • International Journal of Railway
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The railway system requires safety and reliability of service of all railway vehicles. Suitable technical systems and working methods adapted to it, which meet the requirements on safety and good order of traffic, should be maintained. For detection of defects, non-destructive testing methods-which should be quick, reliable and cost-effective - are most often used. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to detect a crack initiation clearly with ultrasonic testing due to noise echoes. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in railway wheelset.

  • PDF

Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops (집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가)

  • Lee, Dong-Hyung;Kwon, Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels