• 제목/요약/키워드: Non-Vascular Smooth Muscle

검색결과 22건 처리시간 0.03초

흰쥐 기관지평활근에 대한 황련류의 이완효능 (Bronchodilatory Effects of Coptidis Rhizomas in Isolated Rat Trachea)

  • 이동웅;장기철
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.797-801
    • /
    • 1997
  • Recently we reported that water extracts of Coptidis Rhizomas showed calcium antagonistic action and alpha-adrenoceptor inhibitory action in the vascular smooth muscle. Since ca lcium antagonistic properties are important in the treatment of various diseases including asthma. In the present study, the bronchodilatory effects of crude extract of three kinds of Coptidis Rhizoma (Coptidis chinensis, Coptis japonica and root hair of Coptis japonica) was investigated using rat isolated trachea. The result showed that all extracts relaxed carbachol-contracted tracheal smooth muscle. Concentration-dependently, in which the root hair of Coptis japonica was the least potent. The inhibitory potency expressed in terms of $IC_{50}$ against carbachol contraction was 1.8${\mu}$g/ml and 2.7${\mu}$g/ml for Coptidis chinensis and Coptis japonica, respectively. These extracts also inhibited KCI-contracted tracheal smooth muscle. But the relative potency ($IC_{50}$) was 3.5 and 4.1 folds weaker than carbachol-induced contraction for Coptidics chinenesis and Coptis japonica, respectively. Pretreatment of crude extracts also inhibited carbachol- or KCI-induced contraction, non-competitively. These findings indicate that the extracts have muscarinic blocking as well as $Ca^{2+}$ channel blocking action. When provoked intracellular stored $Ca^{2+}$ release by carbachol in $Ca^{2+}$-free conditions, initial phasic contraction due to $Ca^{2+}$ release was significantly inhibited by the extracts. As taken together, we conclude that water extracts of Coptidis Rhizoma may be beneficial in bronchospasm or other broncheal tube narrowing conditions such as asthma.

  • PDF

Therapeutic implications of microRNAs in pulmonary arterial hypertension

  • Lee, Aram;McLean, Danielle;Choi, Jihea;Kang, Hyesoo;Chang, Woochul;Kim, Jongmin
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.311-317
    • /
    • 2014
  • microRNAs (miRNAs) are a class of small, non-coding RNAs that play critical posttranscriptional regulatory roles typically through targeting of the 3'-untranslated region of messenger RNA (mRNA). Mature miRNAs are known to be involved in global cellular processes, such as differentiation, proliferation, apoptosis, and organogenesis, due to their capacity to target multiple mRNAs. Thus, imbalances in the expression and/or activity of miRNAs are involved in the pathogenesis of numerous diseases, including pulmonary arterial hypertension (PAH). PAH is a progressive disease characterized by vascular remodeling due to excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). Recently, studies have evaluated the roles of miRNAs involved in the pathogenesis of PAH in these pulmonary vascular cells. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PAH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PAH.

카드뮴중독(中毒) 가토(家兎)의 동정맥(動靜脈)에 관하여 (Experimental Studies on the Vascular Smooth Muscle of $Cd^{2+}$-poisoned Rabbits)

  • 홍기환
    • 대한약리학회지
    • /
    • 제15권1_2호
    • /
    • pp.29-37
    • /
    • 1979
  • Cd 중독(中毒)으로 가토(家兎)에 고혈압(高血壓)을 일으키고 이를 중독(中毒) 가토(家兎)와 대조(對照) 비중독(非中毒) 가토(家兎)의 간문맥(肝門脈), 흉부(胸部) 대정맥(大動脈) 및 폐정맥(肺動脈)을 적출하여 in vitro에서 장력(張力)-길이의 관계를 관찰하고 NE, $K^+$-depolariration 및 angiotensin의 수축(收縮) 효과(效果)를 비교(比較)하였다. 1. 비중독(非中毒) 대조군의 평균 동맥압은 $87.0{\pm}4.7mmHg$이었고 Cd 중독군(中毒群)에서는 $109.0{\pm}2.8mmHg$로 Cd 중독(中毒)에 의하여 의의(意義)있는 증가(增加)를 나타내었다. 2. 동(動) 정맥(靜脈)의 장력(張力)-길이 곡선(曲線)에서 Cd 중독(中毒) 가토의 간문맥(肝門脈)은 passive tension의 증가에 따라 distensibility가 현저히 증가되나 대동맥(大動脈)에 있어서는 오히려 대조군에 비(比)하여 유의(有意)한 감소(減少)를 나타내었고 폐동맥(肺動脈)은 아무런 차이(差異)를 나타내지 아니하였다. 3. Passive tension의 증가에 따른 active tension의 변화(變化)는 대동맥(大動脈)에 있어서는 Cd중독으로 현저히 감약되었으나 간문맥(肝門脈)이나 폐동맥(肺動脈)은 대조군과 별다른 차이(差異)가 없었다. 4. Cd 중독군(中毒群)이나 비중독(非中毒) 대조군에서 passive tension의 변동에 따른 수축결과(收縮效果)는 세 혈관에서 모두 유의(有意)한 차이를 나타내지 아니하였다. 5. 대동맥(大動脈) 절편에 대한 angiotensin의 수축(收縮) 효과(效果)는 Cd 중독군(中毒群)에서 유의하게 저하되었다.

  • PDF

혈관평활근세포에서 Phorbol 12-Myristate 13-Acetate의 전처리가 Interleukin-1β에 의한 Nitrite생성에 미치는 영향 (Inhibitory Effect of Phorbol 12-Myristate 13-Acetate on NO Production Induced by Interleukin-1 beta in Aortic Vascular Smooth Muscle Cells of Rats)

  • 윤병헌;김인겸;박태규;김중영
    • 생명과학회지
    • /
    • 제13권4호
    • /
    • pp.441-447
    • /
    • 2003
  • Protein kinase C (PKC)가 interleukin-1 beta (IL-1$\beta$)에 의하여 산화질소(NO) 생성과정에 어떤 역할을 하는지를 검토하기 위하여, 혈관평활근세포에서 PKC 활성제인 phorbol 12-myristate 13-acetate (PMA)로 전처리한 후 IL-1$\beta$에 의하여 야기되는 NO생성을 nitrite ($NO_2$)로 정량하고, RT-PCR method를 이용하여 iNOS 발현에 미치는 영향을 검토하여 다음과 같은 결과를 얻었다. PMA (20, 200 nM)는 IL-1$\beta$에 의한$NO_2$ 생성을 유의하게 증가시켰다. PMA 200 nM, phorbol 12,13-dibutyrate 500 nM로 전처리하여 8, 24시간 노출된 세포에서 IL-1$\beta$에 의한 NO2생성이 현저히 감소되었으나, PKC 비활성제인 4$\alpha$-phorbol-didecanoate 200 nM로 전처리한 경우는 영향을 받지 아니하였다. PMA 농도를 달리하여 24시간 전처리한 경우 IL-1$\beta$에 의한 $NO_2$ 생성의 감소는 PMA의 농도가 20및 200 nM에서 현저하였다. RT-PCR method를 이용하여 iNOS 발현을 검토한바 IL-1$\beta$ 100U/ml에 의한 iNOS발현이 PMA전처리 및 cycloheximide 또는 actinomycin D존재로서 현저히 억제 되었다. 이상의 결과로 미루어 혈관평활근세포에서 PMA 전처리로 야기되는 IL-1$\beta$에 의한 NO 생성의 감소는, PKC 조절저하작용에 의한 iNOS 발현의 억제로 야기되는 것 같다.

기관근의 수축성에 대한 말초성 Benzodiazepine 수용체의 역할 (Involvement of Peripheral Benzodiazepine Receptor on the Contractility of Canine Trachealis Muscle)

  • 류한영;최형철;최은미;손의동;이광윤;김원준;하정희
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.769-774
    • /
    • 1997
  • Non-neuronal high affinity binding sites for benzodiazepines have been found in many peripheral tissues including cardiac muscle and vascular smooth muscle, and have been designated as 'peripheral benzodiazepine receptor'. Benzodiazepines have been shown to induce relaxation of the ileal, vesical, and uterine smooth muscles. However, it is still unclear about possible involvement of peripheral benzodiazepine receptor on the contractility of trachealis muscle. This study was performed to investigate the role of the peripheral benzodiazepine receptor on the contractility of canine trachealis muscle. Canine trachealis muscle strips of 15 mm long were suspended in an isolated organ bath containing 1 ml of physiological salt solution maintained at $37^{\circ}C$, and aerated with $95%\;O_2/5%\;CO_2$. Isometric myography was performed, and the results of the experiments were as follows: Ro5-4684, FGIN-1-27 and clonazepam reduced a basal tone of isolated canine trachealis muscle strip concentration dependently, relaxant actions of RoS-4684 and FGIN-1-27 were antagonized by PK11195, a peripheral benzodiazepine receptor antagonist. Flumazenil, a central type antagonist, did not antagonize the relaxant action of Peripheral type agonists. Saturation binding assay of [3H]Ro5-4864 showed a high affinity$(Kd=5.33{\pm}1.27nM,\;Bmax=\;867.3{\pm}147.2\;fmol/mg\;protein)$ binding site on the canine trachealis muscle. Ro 5-4684 suppressed the bethanechol-, 5-hydroxyoyptamine- and histamine- induced contractions. Platelet activating factor (PAF) exerted strong and prolonged contraction in trachealis muscle strip. Strong tonic contraction by PAE was attenuated by Ro 5-4684, but not by WEB 2086, a PAF antagonist. Based on these results, it is concluded that the peripheral benzodiazepine receptor mediates the inhibitory regulation of contractilty of canine trachealis muscle.

  • PDF

선천면역 및 적응면역에서 비만세포의 기능 (The Role of Mast Cells in Innate and Adaptive Immunity.)

  • 김영희
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.891-896
    • /
    • 2008
  • The function of mast cells as effector cells in allergy has been extensively studied. Mast cells activated through high affinity IgE-receptor ($Fc{\varepsilon}RI$) release diverse mediators, and lead to smooth muscle constriction, vasodilation, increase of vascular permeability, leukocyte recruitment and activation, mucus secretion, and tissue proliferation and remodeling. However, various other immunological and non-immunological signals can lead to the activation of mast cells. In resent years, mast cells have been identified to be involved in a complex range of immune functions. Mast cells can be important as key players in the regulation of innate as well as adapted immune responses, and may influence the development of allergy, autoimmune disorder and peripheral tolerance. This review summarizes the recent advances in the understanding of effector functions of mast cells in immune responses.

An Immunohistochemical Study of Viral Antigen in Aborted Fetuses Naturally Infected by Bovine Viral Diarrhea Virus

  • Shin, Tae-Kyun
    • 한국수의병리학회지
    • /
    • 제3권2호
    • /
    • pp.73-76
    • /
    • 1999
  • The tissue distribution and cellular localization of viral antigen in the brain of aborted fetus with bovine viral diarrhea virus(BVDV) infection was studied; BVDV antigens was detected in spleen, kidney, lung, eyelid as well as brain. In the brain, the virus was recognized in neurons and non-neuronal cells in the cerebellum and cerebrum. Many cells in the superficial layer and occasional Purkinje cells had BVDV antigens. As well, BVDV was also found in the perivascular cells, vascular endothelial cells and smooth muscle cells in the vessels and neuroglial cells in the white matter. This finding suggests that BVD virus favors infect progenitor cells in the brain, notably in the superficial layer of cerebellum, and damage normal development of cerebellum, which leads to cerebellar hypoplasia.

  • PDF

Nitric oxide에 의한 수퇘지 음경후인근의 비아드레날린 비콜린 동작성 이완 II. 비아드레날린 비콜린성 신경의 전장자극과 S-nitrosothiols에 의한 돼지 음경후인근의 이완 효과 비교 (Nitric oxide(NO) mediating non-adrenergic non-cholinergic(NANC) relaxation in the boar retractor penis muscle II. Comparison of the relaxant properties induced by nonadrenergic, noncholinergic nerve stimulation and S-nitrosothiols in the porcine retractor penis muscle)

  • 문규환;김태완;강동묵;이완;양일석
    • 대한수의학회지
    • /
    • 제35권3호
    • /
    • pp.459-469
    • /
    • 1995
  • As S-nitrosothiols were proposed as nitrergic carriers in vascular and nonvascular smooth muscle, we have investigated the relaxant properties of several S-nitrosothiols in the porcine retractor penis(PRP) muscle and compared them with the effects of exogenously added NO, electrical field stimulation(EFS) of NANC nerves and sodium nitroprusside(SNP). Also the influences of oxyhemoglobin and hydroquinone on the relaxant responses were investigated. In addition, effects of NO on membrane potentials and its involvement in the generation of inhibitory junction potential(IJP) were investigated with conventional intracellular microelectrode technique. The results were summerized as follows. 1. Frequency-dependent relaxations of PRP muscle were induced by EFS to NANC nerve. Tetrodotoxin($1{\times}10^{-6}M$) abolished the relaxations of PRP muscle induced by EFS, and L-NAME(($2{\times}10^{-5}M$) and methylene blue($4{\times}10^{-5}M$) inhibited the relaxations. L-NAME-induced inhibition of the relaxations was reversed by L-arginine($1{\times}10^{-3}M$), but not by D-arginine. 2. Exogenous NO($1{\times}10^{-5}-1{\times}10^{-4}M$), sodium nitroprusside(($1{\times}10^{-7}-1{\times}10^{-4}M$) induced dose-dependent relaxations of PRP muscle. All S-nitrosothiols($1{\times}10^{-7}-1{\times}10^{-4}M$) tested relaxed the PRP muscle in dose-dependent manner and the potency order was SNAP>GSNO>CysNO>SNAC. 3. Oxyhemoglobin($5{\times}10^{-5}M$) blocked the relaxation induced by exogenous NO and inhibited EFS-, S-nitrosothiols-, and SNP-induced relaxation. 4. Hydroquinone($1{\times}10^{-4}M$) also abolished the relaxations induced by exogenous NO, and reduced the relaxations induced by S-nitrosothiols, but did not affect EFS- and SNP-induced relaxations. 5. SNP($2{\times}10^{-6}-5{\times}10^{-6}M$) relaxed muscle strips but the membrane potentials were not affected. 6. EFS with several pulses(1ms, 2Hz, 80V) produced an inhibitory junction potential(IJP) with muscle relaxation. They were abolished by TTX($2{\times}10^{-6}M$). $N^G$-nitro-$_{\small{L}}$-arginine(L-NNA, $2{\times}10^{-5}M$) abolished the muscle relaxation, but had no effect on IJP.

  • PDF

Carpinus turczaninowii extract modulates arterial inflammatory response: a potential therapeutic use for atherosclerosis

  • Son, Youn Kyoung;Yoon, So Ra;Bang, Woo Young;Bae, Chang-Hwan;Yeo, Joo-Hong;Yeo, Rimkyo;An, Juhyun;Song, Juhyun;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • 제13권4호
    • /
    • pp.302-309
    • /
    • 2019
  • BACKGOURND/OBJECTIVES: Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS: Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS: C. turczaninowii extract contains high amounts of TPC ($225.6{\pm}21.0mg$ of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average $14.8{\pm}1.97{\mu}g/mL$ $IC_{50}$ at 40 min). Cell viabilities after exposure to the extracts (1 and $10{\mu}g/mL$) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and $10{\mu}g/mL$) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at $1-10{\mu}g/mL$ in non-stimulated cells, and at 5 and $10{\mu}g/mL$ in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at $1-10{\mu}g/mL$ in non-stimulated cells, and at $10{\mu}g/mL$ in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS: This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.