• Title/Summary/Keyword: Non-Uniform Field

Search Result 309, Processing Time 0.031 seconds

Numerical Simulajtions of Non-ergodic Solute Transport in Strongly Heterogeneous Aquiferss (불균질도가 높은 대수층내에서의 비에르고딕 용질이동에 관한 수치 시뮬레이션)

  • Seo Byong-Min
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.245-255
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume, $$lt;S_{ij}'(t',l')$gt;$ and plume centroid variances, $$lt;R_{ij}'(t',l')$gt;$ were simulated with 3200 Monte Carlo runs for three variances of log K, $\omega^2_y1.0,,2.5,$ and 5.0, and three dimensionless lengths of line plume sources ( l=,5 and 10) normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are not fit well with the first order results. The first order theoretical results definitely underestimated the simulated transverse second spatial moments for the aquifers of large u: and small initial plume sources. The ergodic condition for the second spatial moments is far from reaching, and the first order theoretical results of the transverse second spatial moment of the ergodic plume slightly underestimated the simulated moments.

New Method of Computing the Stokes Drift Including Shear Effect in the Cross-Sectional Flow Field (유수단면 흐름장에서 Shear 효과를 갖는 Stokes Drift의 계산법)

  • Kim, Jong-Hwa;Park, Byong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.9-26
    • /
    • 1997
  • Stokes drift(SD) and Lagrangian discharge(LD) are important factors for analysis of flushing time, tidal exchange, solute transport and pollutant dispersion. The factors should be calculated using the approached method to flow phenomena. The aim of this paper re-examines the previous procedures for computing the SD and LD, and is to propose the new method approached to stratified flow field in the cross-section of coastal region, e.g. Masan Bay. The intensity of velocity near the bottom boundary layer(BBL) depends on the sea-bed irregularity in the coastal estuaries. So we calculated the depth mean velocity(DMV) considering that of BBL omitted in Kjerfve's calculation method. It revealed that BBL effect resulting in application of the bay acts largely on DMV in half more among 1l stations. The new expression of SD and LD per unit width in the cross-section using the developed DMV and proposed decomposition procedure of current were derived as follow : $$Q=u_0+\frac{1}{2}H_1{U_1cos(\varphi_h-\varphi_u)+U_3cos(\varphi_h-\varphi{ud})} LD ED SD$(Q_{skim}+Q_{sk2}) The third term, $Q_{sk2}$, on the right-hand of the equation is showed newly and arise from vertical oscillatory shear. According to the results applied in 3 cross-sections including 11 stations of the bay, the volume difference between proposed and previous SD was founded to be almost 2 times more at some stations. But their mean transport volumes over all stations are 18% less than the previous SD. Among two terms of SD, the flux of second term, $Q_{skim}$, is larger than third term, $Q_{sk2}$, in the main channel of cross-section, so that $Q_{skim}$ has a strong dependence on the tidal pumping, whereas third term is larger than second in the marginal channel. It means that $Q_{sk2}$ has trapping or shear effect more than tidal pumping phenomena. Maximum range of the fluctuation in LD is 40% as compared with the previous equations, but mean range of it is showed 11% at all stations, namely, small change. It mean that two components of SD interact as compensating flow. Therefore, the computation of SD and LD depend on decomposition procedure of velocity component in obtaining the volume transport of temporal and spacial flow through channels. The calculation of SD and LD proposed here can separate the shear effect from the previous SD component, so can be applied to non-uniform flow condition of cross-section, namely, baroclinic flow field.

  • PDF

A Comparative Study on Dynamic Behavior of Soil Containers that Have Different Side Boundary Conditions (측면 경계 조건이 다른 토조들의 동적거동 비교에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Son, Su-Won;Na, Ho-Young;Son, Jeong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.107-116
    • /
    • 2011
  • Rigid soil containers (or rigid boxes) are often used for 1g shaking table tests. The rigid boxes, however, do not accurately simulate the amplification of ground acceleration and phase difference of seismic motion in the model ground due to the confinement of shear deformation and the reflection of seismic wave at the box walls. Laminar soil containers (or laminar shear boxes) can simulate the free field motion at convincingly superior accuracy than the rigid ones. In this study, the soft ground is modeled for both types of boxes and is subjected to seismic loading using a 1g shaking table. The comparison of the results using the two types of soil containers illustrates that, in case of the rigid box, the ground acceleration shows non uniform distribution and the phase synchronization of input motion. Whereas, the dynamic behavior of the laminar shear box shows good agreement with the free field behaviors such as the amplification of ground acceleration and the occurrence of phase difference.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

Characteristic of room acoustical parameters with source-receiver distance on platform in subway stations (지하철 승강장의 음원-수음점 거리에 따른 실내음향 평가지수 특성)

  • Kim, Suhong;Song, Eunsung;Kim, Jeonghoon;Lee, Songmi;Ryu, Jongkwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.615-625
    • /
    • 2021
  • Prior to proposing appropriate standard for subway station platform, this study conducted field measurements to examine characteristics of room acoustics on platform of two subway stations. As a result of analyzing the longitudinal length of the platform, Sound Pressure Level (SPL) decreased (maximum difference : 14 dB), Reverberation Time (RT) tended to increase (maximum difference of 0.8 s ~ 1.5 s), and C50 and D50 were decreased (maximum difference: 5.9 dB ~ 9.1 dB and 31.8 % ~ 37.6 %, respectively) as measurement positions moved away from the sound source. The Interaural Cross-correlation Coefficient (IACC) did not show clear tendency, but it was lower than 0.3 in entire points. It is judged that the subway platform has non-uniform sound field characteristics due to various combinations of direct and reflective sound even though it is finished with a strong reflective material.This indicates that the room acoustic characteristics of the near and far sound field are clearly expressed depending on the source-receiver distances in the subway platform having a long flat shape with a low height compared to the length.Therefore, detailed architectural and electric acoustic design based on the characteristics of each location of speaker and sound receiver in the platform is required for an acoustic design with clear sound information at all positions of the platform.

An investigation on the insulation characteristics of $SF_6$ mixtures gas under uniform and non-uniform electric field (평등/불평등 전계에서의 $SF_6$혼합된 가스의 절연파괴특성 연구)

  • Lee, Sang-Hwa;Lee, Young-Jo;Ahn, Hee-Sung;Jeong, Seung-Young;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1397-1398
    • /
    • 2007
  • 본 연구는 $SF_6$와 Dry-air(건조공기), $N_2$, $CO_2$ 가스가 혼합된 절연매체의 절연 특성과 부분방전 특성 연구를 기초실험용 쳄버와 70kV급 GIS mock up을 이용하여 교류전압을 인가하여 실험이 수행되었다. 전자의 경우, Sphere gap 및 Needle/Plate 전극시스템을 이용하여 순수 $SF_6$가스와 Dry-air, $N_2$, $CO_2$ 가스들의 절연내력을 비교하고, 챔버의 압력을 5기압으로 유지한 상태에서 Dry-air, $N_2$, $CO_2$$SF_6$가스의 혼합비를 변화시키면서 절연내력이 측정되었다. 후자의 경우, 기초실험에서 도출된 $SF_6$가스와 Dry-air, $N_2$, $CO_2$의 최적의 혼합비율을 선택한 후, 방전 개시전압과 부분방전 양상을 순수 $SF_6$가스의 결과와 비교분석하기 위한 실험을 수행하였다. 이를 위하여 GIS 사고의 주요원인이 되는 결함들, 즉 Protrusion, Floating, Free moving particle 들을 인위적으로 모의하여 Mock up 내부에 설치하고 내부 압력을 5기압으로 유지한 상태에서 수행되었다. 전자의 경우, $0.5{\sim}5$ 기압 범위 내에서 Dry-air, $N_2$, $CO_2$ 압력을 변화시켰을 때 절연내력은 전극시스템에 무관하게 순수 $SF_6$가스의 결과치의 Dir-air $47{\sim}51%$, $N_2\;48{\sim}61%$, $CO_2\;47{\sim}60%$ 정도이다. 또한 챔버 압력이 5기압인 상태에서 Dry-air, $N_2$, $CO_2$가 80% 혼합된 절연매체는 순수 $SF_6$가스 절연내력의 80%이상의 절연내력을 가지고 있다. 후자의 경우, 인가전압을 고정 시켰을 때, 부분방전 패턴과 방전크기는, 순수 $SF_6$가스와 Dry-air 가 80% 혼합된 절연매체는 동일한 패턴과 방전크기를 나타내고 있다. 이러한 결과를 근거로, 가스 압력이 5기압에서 운전되는 전력기기의 절연매체로서 혼합가스를 사용할 경우, $SF_6$가스와 Dry-air, $CO_2$, $N_2$ 가스들의 혼합비는 2:8정도가 적절한 것으로 제안한다.

  • PDF

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

The Application of CISG to International Commercial Arbitration (聯合國國際貨物銷售合同公約在國際商事仲裁中的适用(국제물품매매계약에 관한 유엔협약이 국제상사중재에서의 적용))

  • Li, Wei
    • Journal of Arbitration Studies
    • /
    • v.26 no.1
    • /
    • pp.107-134
    • /
    • 2016
  • International arbitration is the important field of applying CISG and the backbone of uniform law developed by CISG. Now CIETAC tribunals like courts of contracting states apply CISG precisely, which is beneficial to improving the quality and the credit of arbitral cases. Arbitration has the characters of independence and the non-government. the legal foundation of arbitral tribunal's applying CISG are the national arbitral law, the applicable arbitral procedures and usages of arbitration, not for performing international obligations under the CISG. CIETAC mainly use China Contract Law and CISG over the cases of sale of goods. Because of no provisions on recovery of differential price loss (equal to article 75 and 76 of CISG) Chinese tribunals have more discretion in determining the sum of damages under the China Contract Law. Applying China Contract Law may not beneficial to aggrieved party.