평등/불평등 전계에서의 SF6흔합된 가스의 절연파괴특성 연구

이상화*, 이영조**, 안희성*, 정승용**, 구자윤** *기초전력연구원, **한양대학교

An investigation on the insulation characteristics of SF₆ mixtures gas under uniform and non-uniform electric field

Sang-hwa Lee*, Young-jo Lee**, Hee-Sung Ahn*, Seung-young Jeong**, Ja-yoon Koo** *KESRI, **Hanyang University

Abstract- 본 연구는 SF₆와 Dry-air(건조공기), N₂, CO₂ 가스가 혼합 된 절연매체의 절연 특성과 부분방전 특성 연구를 기초실험용 쳄버와 70kV급 GIS mock up을 이용하여 교류전압을 인가하여 실험이 수행되 었다. 전자의 경우, Sphere gap 및 Needle/Plate 전극시스템을 이용하여 순수 SF₆가스와 Dry-air, N₂, CO₂ 가스들의 절연내력을 비교하고, 챔버 의 압력을 5기압으로 유지한 상태에서 Dry-air, N₂, CO₂와 SF₆가스의 혼합비를 변화시키면서 절연내력이 측정되었다. 후자의 경우, 기초실험 에서 도출된 SF₆가스와 Dry-air, N₂, CO₂의 최적의 혼합비율을 선택한 후, 방전 개시전압과 부분방전 양상을 순수 SF₆가스의 결과와 비교탄 석하기 위한 실험을 수행하였다. 이를 위하여 GIS 사고의 주요원인이 되는 결함들, 즉 Protrusion, Floating, Free moving particle 들을 인위적 으로 모의하여 Mock up 내부에 설치하고 내부 압력을 5기압으로 유지 한 상태에서 수행되었다.

전자의 경우, 0.5~5 기압 범위 내에서 Dry-air, N₂, CO₂ 압력을 변화시 켰을 때 절연내력은 전극시스템에 무관하게 순수 SF₆가스의 결과치의 Dir-air 47~51%, N₂ 48~61%, CO₂ 47~60% 정도이다. 또한 챔버 압력 이 5기압인 상태에서 Dry-air, N₂, CO₂ 가 80% 혼합된 절연매체는 순수 SF₆가스 절연내력의 80%이상의 절연내력을 가지고 있다. 후자의 경우, 인가전압을 고정 시켰을 때, 부분방전 패턴과 방전크기는, 순수 SF₆가스 와 Dry-air 가 80% 혼합된 절연매체는 동일한 패턴과 방전크기를 나 타내고 있다.

이러한 결과를 근거로, 가스 압력이 5기압에서 운전되는 전력기기의 절 연매체로서 혼합가스를 사용할 경우, SF6가스와 Dry-air, CO₂, N₂ 가스 들의 혼합비는 2:8정도가 적절한 것으로 제안한다.

1.서 론

현재 초고압 송변전기기에 적용되고 있는 SF₆가스는 절연 및 소호성능 이 우수하며 회복특성이 뛰어나기 때문에 초고압 기기의 절연매체로서 널리 사용되고 있으나 가격이 비싸고 저온 및 높은 압력에서 액화되기 쉬우며 대기 중으로 방출될 경우에는 온실효과를 야기 시키는 단점을 가지고 있다. 최근 환경에 대한 관심과 규제가 높아지면서 온실가스에 대한 규제로서 교토 의정서가 정식 발효됨에 따라 SF₆가스는 금후 총량 제한에 의해 사용량이 규제 받을 가능성이 대단이 높다. 따라서 SF₆ 와 Air, N₂, CO₂, He 등과 혼합된 절연매체들이 하나의 대안으로 연구되어 절연특성, 안정성 과 경제성들에 대한 분석 결과에 의해 SF₆-N₂ 혼합체 가 연구 개발되어 선진국을 중심으로 상용화되고 있다.

본 연구에서는 현재 대체 철연가스로 주목받고 있는 Dry-air(공기 중 에서의 수분과 각종 불순물을 제거한 공기), N₂, CO₂가스와 SF₆ 가스를 0.5~5기압까지 변화시켰을 때의 절연내력을 비교하였다. 두 기체의 혼 합된 절연매체에 대한 실험적 연구를 위하여 기초실험용 챔버의 압력을 5기압으로 유지하고 SF₆가스와 Dry-air, N₂, CO₂의 혼합비율을 변화시 켰다. 전극은 평등전계를 위하여 직경 50mm 인 Sphere gap, 와 불평등 전계를 위하여 침 끝 곡률반경이 1mm 인 Needle / 평판전극 을 챔버 내부에 설치하고 교류 전압을 인가하여 절연파괴 전압을 측정하였다. 또 한 실제 전력설비에 적용할 경우, SF₆가스 와 Dry-air, N₂, CO₂의 적절 한 혼합 비율을 제안하기 위하여, 70kV급 GIS mock up 내부의 압력을 5기압으로 유지하고 GIS 사고 주요 원인으로 알려진 결함들을 인위적으 로 모의하여 SF₆가스와 Dry-air, N₂, CO₂의 혼합비율을 변화시키며 방 전 개시전압과 부분방전크기를 비교분석하였다.

2. 본

2.1 실험장치 및 방법

절연파괴특성 실험을 하기 위해서 Hipotronics사의 절연파괴시험기 (100kV)를 이용하여 연구대상 절연매체에 단시간 절연파괴 시험방법(절

론

연파괴 예상전압까지 1분 내에 상승)을 적용하여 교류전압을 인가하였

<그림 1> 실험장치 및 전경

그림 1과 같이, 기초실험용 챔버(200kV AC, 10기압) 내부의 순도를 유지하기 위해서 10⁻³torr의 진공도에 도달한 후 실험목적에 부합되도 록 연구 대상 절연매체의 가스 압력을 다양하게 유지하였다. 투입되는 절연매체의 양을 측정하기 위하여 Dwyer사의 Flow Meter(Max1L/min) 를 사용하였으며, 압력 측정은 VICTOR사의 Regulator(0-6 atm)를 사용 하였다. 이러한 과정을 거쳐 가스양과 압력들이 조정된 후 절연 파괴시 험이 수행되었다. 그 결과들을 이용하여 GIS Mock-up(70kV급, 가스 압력⁻⁵kgf/cm²) 내부에 Protrusion, Floating, Free moving particle 3가지 결함을 인위적으로 모의하여 삽입하였고 가스투입과 압력조종은 상기 서술된 방법이 그대로 적용되었다. 전압은 시험변압기 (PD free Test transformer, 100kVA)를 이용하여 인가 되었으며 삽입된 결함에 의한 부분방전의 패턴은 IEC 60270에 부합되는 HAEFLEY TE571을 이용하 여 분석되었다.

2.2 평등전계에서의 절연파괴 특성

Sphere gap(직경 50mm, 간격 1mm)를 이용하여 거의 평등한 전계를 형성하였으며, SF₆가스와 Dry-air, N₂, CO₂ 의 압력을 각각 0.5기압에 서 5기압까지 변화시켜가며 절연파괴전압을 측정 비교하였다. 혼합가스 의 경우, 챔버의 압력을 5기압으로 유지하고 SF₆가스혼합비를 10%에서 100%까지 변화시켜가며 교류전압에 대한 절연파괴 전압을 측정하였다. 기압 변화에 따른 순수 SF₆가스와 Dry-air, N₂, CO₂ 의 절연파괴 전압 을 비교해보면 그림2에 (a)와 같이 Dry-air 의 경우 약47~51%, N₂의 경우 47~61%, CO₂의 경우 47~60% 정도로 나타났다. 그림2에 (b) 혼 합가스(SF₆ 20%+Dry-air 80%, SF₆ 20%+N₂ 80%, SF₆ 20%+CO₂ 80%) 인 경우 5 기압 하에서의 절연내력은 각각 순수SF₆가스의 90%, 86%, 89%정도이다. 또한 특이한 점은 SF₆ 혼합비가 30%를 초과 할 경우 모 든 혼합가스의 절연내력이 순수SF₆가스의 90~100%이상을 보여주고 있 다.

2.3 불평등전계에서의 절연파괴 특성

침 끝 곡률반경이 1mm 인 Needle / 평판전극의 전극간격을 2mm 로 유지하여 불평등전계가 형성되었고 전술된 방법과 동일하게 가스 압력 과 혼합비, 인가전압이 선택되어 실험이 수행되었다. 그림3에 (a)와 같이 Dry-air의 절연내력은 순수SF₆의 약 43~52%, N₂의 경우 57~60%, CO₂ 의 경우 50~58% 정도로 나타났으며 그림3에 (b)는 혼합가스(SF₆ 20%+Dry-air 80%, SF₆ 20%+N₂ 80%, SF₆ 20%+CO₂ 80%) 인 경우 5 기압 하에서의 절연내력은 각각 순수SF₆가스의 83%, 90%, 85%정도이 다. 또한 평등전계에서와 같이 혼합비가 40%를 초과 할 경우 모든 혼합 가스의 절연내력이 순수SF₆가스의 90~100%이상을 보여주고 있다.

2.4 인위적 결함을 이용한 부분방전패턴 분석

2.4.1 Conductor-Fixed Protrusion

Ogura Needle(곡률반경 100um, 길이 5cm)을 GIS 내부 도체에 고정시 켜 결함을 모의하였고, 얻어진 부분방전의 패턴은 그림 4과 같다.

<그림4> Conductor-Fixed Protrusion 부분방전 패턴

인가전압을 16kV에 고정 시켰을 때, 순수 SF₆가스와 2:8의 혼합비의 절연매체들 모두 인가전압의 위상 270° 부근에서 부분방전이 검출되었 으며 방전양은 순수SF₆의 경우 5pC정도, Dry-air혼합가스 인경우 9.3pC, N₂혼합가스인 경우 8pC, CO₂혼합가스는 7.1pC 검출되었다. 그러나 N₂혼 합가스인 경우, 동일한 인가전압에서 270° 부근에서 방전과 90° 부근에 서 2pC 정도의 작은방전이 발생되었다.

2.4.2 Floating Electrode

Ogura Needle(곡률반경 100um, 길이 5cm)을 GIS 내부에 떠있는 상태 로 결함을 모의하였고 얻어진 결과는 그림 5과 같다.

<그림5> Floating Electrode 부분방전 패턴

인가전압을 28kV 에 고정 시켰을 때, 순수 SF₆가스와 2:8의 혼합비의 절연매체들 모두 인가전압의 위상 90° 270° 부근에서 부분방전이 검출 되었으며 방전양은 순수SF₆의 경우 5pC정도, Dry-air혼합가스 인경우 10pC, N₂혼합가스인 경우 12pC, CO₂ 혼합가스는 15 pC정도의 방전이 검출되었다.

2.4.3 Free moving particle

알루미늄ball(1mm)을 모의결함으로 사용하여 순수SF₆, Dry-air, 혼합가 스의 방전특성을 비교하였다.

<그림6> Free moving particle 부분방전 패턴

동일한 인가전압 18.7kV에서 검출된 방전양은, 순수 SF6가스의 경우 9.9pC정도, Dry-air혼합가스 인경우 11pC, N2혼합가스인 경우 12pC, CO2 혼합가스는 10 pC 검출되었다. 방전위상에서 전 위상에서 발생하였 으며 별다른 차이점이 없었다.

3. 결과요약

 실험용 챔버의 압력을 0.5~5기압까지 변화 시켰을 때, 순수 SF6가스 를 기준으로 할 때 Dry-air의 경우 절연내력은 평등전계에서는 약47~ 51%, 불평등전계에서는 약43~52%, N2경우 평등전계 시 약47~61%, 불 평등전계 시 약57~60%, CO2 평등전계 시 약47~60%, 불평등전계 시 약50~58%정도로 세 가지 가스를 비교했을 때 N2가 절연내력이 가장 농다.

2. 5기압으로 고정된 실험용 챔버내에서 SF6가스의 혼합비에 따른 절연 내력을 순수SF6가스를 기준으로 비교해보면,

- *Dry-air일 때
 - 평등전계의 경우, 혼합비가 20%인 경우 84% 정도이며, 혼합비 가 30% 이상이면 90~100% 이상에 이르고 있다.

- 불평등전계의 경우, 혼합비가 20%인 경우 83% 정도이며, 혼합 비가 30% 이상이면 90~100% 이상에 이르고 있다.

- *N2일 때
 - 평등전계의 경우, 혼합비가 20%인 경우 85%정도이며, 혼합비가 30% 이상이면 90~100%이상에 이르고 있다.
 - 불평등전계의 경우, 혼합비가 20%인 경우 90% 정도이며, 혼합 비가 20% 이상이면 90~100%이상에 이르고 있다.
- *CO2일때 - 평등전계의 경우, 혼합비가 20%인 경우 90%정도이며, 혼합비가
 - 20% 이상이면 90~100%이상에 이르고 있다. - 불평등전계의 경우, 혼합비가 20%인 경우 85% 정도이며, 혼합
- 물왕당신세의 상구, 관합미가 20%한 상구 80% 정도이어, 관합 비가 40% 이상이면 90~100%이상에 이르고 있다.

3. GIS Mock up의 압력을 5기압으로 유지하고 인위적 결함들을 이용하 여 동일한 인가전압 하에서 순수SF6가스, 혼합가스SF6 20%+Dry-air 80%, SF6 20%+N₂ 80%, SF6 20%+CO₂ 80%)는 방전 패턴과 검출된 방 전양은 거의 동일하였다.

4.결 론

SF6가스의 혼합비에 따른 절연내력의 변화곡선에 의하면, 모든 혼합가 스의 혼합비가 20%까지 절연내력이 급격히 증가하여 순수 SF6가스의 80%이상에 이르고 그 이상의 혼합비에서는 변화의 정도가 완만해진다. 이러한 결과를 고려할 때, 가스절연매체 절연물을 사용하는 전력기기에 환경적인 요소를 감안하여 Dry-air, N₂, CO₂를 절연매체로 선정 시 SF6 가스의 혼합비를 20%정도로 할 것을 제의한다.

[참 고 문 헌]

[1] M. Piemontesi, F. Koenig, L. Niemeyer , C. Heitz "Insulation performance of $10\% SF_6/90\%~N_2$ mixture" IEEE 1999

[2] Y. Qiu, E. Kuffel "Comparison of SF_6/N_2 and SF_6/CO_2 Gas Mixtures as Alternatives to SF_6 Gas" Vol 6 No. 6, December 1999

[3] C.S. Seo , J.S. Lee, J.T. Kim, J.Y. Koo, "Breakdown Characteristics of SF₆-N₂ Mixtures under Uniform and Nin uniform Electric Field", 대한전기학회 하계학술대회 논문집. pp2299-2301. July 1999

[4] Sayed A. ward " Optimun SF_6-N_2 , SF_6-Air , SF_6-CO_2 Mixtures Based on Paticle Contamination", Conf. Record of the IEEE Intern. Symp. on Elect. Insul., Anaheim, CA USA, April 2000