• Title/Summary/Keyword: Non-Thermal Plasma

Search Result 231, Processing Time 0.033 seconds

A Study on the removal of $NO_x$ by using Non-thermal Plasma Discharge (Non-thermal Plasma Discharge를 이용한 $NO_x$ 제거에 관한 연구)

  • 안정언;이석현;정용원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.419-420
    • /
    • 2001
  • 최근 산업설비 및 기타 시설에서 배출되는 유해가스의 배출허용 기준이 계속 강화되고 있으며 그 중에서도 NOx는 SOx와 함께 대기오염의 주된 원인으로 작용하고 있다. 국내에서도 이들 유해가스를 제거하기 위한 플라즈마 적용기술이 활발히 연구되었으며, 일부 기술은 상용화 단계에 있다. NOx 제거에 있어서 펄스 코로나 방전에 의한 전자의 생성은 유입되는 가스 및 공기에 충돌하여 반응성이 큰 다량의 이온, 원자 및 radical(N, O, OH, $O_3$등)을 생성한다. (중략)

  • PDF

Principles and Applications of Non-Thermal Technologies for Meat Decontamination

  • Yewon Lee;Yohan Yoon
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.19-38
    • /
    • 2024
  • Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.

Recent Advance in High Pressure Induction Plasma Source

  • Sakuta, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.395-402
    • /
    • 2001
  • An induction thermal plasma system have been newly designed for advanced operation with a pulse modulated mode to control the plasma power in time domain and to create non-equilibrium effects such as fast quenching of the plasma to produce new functional materials in high rate. The system consists of MOSFET power supply with a maximum power of 50 kW with a frequency of 460 kHz, an induction plasma torch with a 10-turns coil of 80 mm diameter and 150 mm length and a vacuum chamber. The pulse modulated plasma was successfully generated at a plasma power of 30 kW and a high pressure of 100 kPa, with taking the on and off time as 10 ms, respectively. Measurements were carried out on the time-dependent spectral lines emitted from Ar species. The dynamic behavior of plasma temperature in a pulse cycle was estimated by the Boltzmann plot and the excitation temperature of Ar atom was found to be changed periodically from around 0.5 to 1.7 eV during the cycle. Two application regions of the induction thermal plasma newly generated were introduced to material processing with high rate synthesis based on non equilibrium effects, and to the finding of new arc quenching gases coming necessary for power circuit breaker, which is friendly with earth circumstance alternative to SF6 gas.

  • PDF

Plasma Propagation Speed and Electron Temperature of Atmospheric Pressure Non-Thermal Ar Plasma Jet

  • Han, Guk-Hui;Kim, Dong-Jun;Kim, Hyeon-Cheol;Kim, Yun-Jung;Kim, Jung-Gil;Lee, Won-Yeong;Na, Ya-Na;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.512-513
    • /
    • 2013
  • Space and time resolved discharge images from an atmospheric pressure non-thermal Ar plasma jet have been observed by a ICCD camera to investigate the electron temperatures. Plasma jet device consisting of a syringe electrode inserted into a glass tube has been introduced. A high voltage is applied to the syringe electrode. The syringe needle has an outer diameter of 1.8 mm, an inner diameter of 1.3 mm, and a total length of 39.0 mm. The needle is inserted into a glass tube of outer diameter 2.4 mm and inner diameter 2.0 mm, and a total length of 80.0 mm. The Ar plasma propagation speed on the cathode has been shown to be about 2.1 km/s at input discharge voltage of 3.6 kV, discharge current of 19.9 mA and driving frequency of about 45 kHz. Particularly, the electron temperature in plasma jet were found to be about 1.8 eV at input discharge voltage of 3.6 kV and driving frequency of 45 kHz, respectively.

  • PDF

Non Thermal Plasma Applicable Mechanisms for the Improvement of Air Pollutants Removal Efficiency (대기오염 가스 제거효율 향상을 위한 저온 플라즈마 응용기구 연구)

  • Kim, Dae-Il;Kim, Hyung-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.648-652
    • /
    • 2004
  • A comparative investigation of an experimental and a simulation of chemical kinetics for NOx removal from dielectric barrier discharges is presented. Several types of dielectric barrier discharges were implemented depending upon the configuration of electrodes. The simulation was based on an approximate mathematical model for plasma cleaning of waste gas. The influence of non uniform distributions of species due to the production of primary active particles in the streamer channel was taken into account. A comparison of observed experimental to the calculated removal efficiency of NOx showed acceptable agreement.

  • PDF

Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor (평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성)

  • 송영훈;김관태;류삼곤;이해완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.

Optimal Design of Atmospheric Plasma Torch with Various Swirl Strengths (스월 강도에 의한 상압 플라즈마 토치의 최적 설계)

  • Moon, J.H.;Kim, Youn-J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1736-1741
    • /
    • 2003
  • The characteristics plasma flow of an atmospheric plasma torch used for thermal plasma processing is studied. In general, it is produced by the arc-gas interactions between a cathode tip and an anode nozzle. The performance of non-transferred plasma torch is significantly dependent on jet flow characteristics out of the nozzle. In this work, the distribution of gas flow that goes out to the atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric plasma torch. Numerical analysis is carried out with various angles of an inlet flow which can create different swirl flow fields. Moreover, the size of plasma plume is experimentally depicted.

  • PDF

The effect of plasma on shear bond strength between resin cement and colored zirconia

  • Park, Chan;Yoo, Seung-Hwan;Park, Sang-Won;Yun, Kwi-Dug;Ji, Min-Kyung;Shin, Jin-Ho;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • PURPOSE. To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS. 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS. SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION. NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring.

A Study of Non-thermal Plasma Generation on a Photocatalytic Reactor Using a Ceramic Honeycomb Monolith Substrate (세라믹 벌집형 담체를 사용한 광촉매 반응기의 플라즈마 생성에 관한 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • Since photocatalysts are activated by lights of UV wavelengths, plasma is alternatively used as a light source for a photocatalytic reactor. Light intensity generated by plasma is proportional to the surface area of catalytic material, and this, in many practical applications, is prescribed by the geometry of a plasma generator. Thus, it is crucial to increase the surface area far sufficient light intensity for photocatalytic reaction. For example, in a pack-bed type reactor, multitudes of beads are used as a substrate in order to increase the surface area. Honeycomb monolith type substrate, which has very good surface area to volume ratio, has been difficult to apply plasma as a light source due to the fact that light penetration depth through the honeycomb monolith was too short to cover sufficient area, thus resulting in poor intensity for photocatalytic reaction. In this study, nonthermal plasma generation through a photocatalytic reactor of honeycomb monolith substrate is investigated to lengthen this short penetration depth. The ceramic honeycomb monolith substrate used in this study has the same length as a three way catalyst used fur automotive applications, and it is shown that sufficient light intensity for photocatalytic reaction can also be obtained with honeycomb monolith type reactor.

The removing characteristic of harmful exhaust from a motorcycle using non-thermal plasma (플라즈마를 이용한 이륜자동차 배출가스저감 특성)

  • Kim, Young-Ju;Park, Hong-Jae;Jung, Jang-Gun;Lee, Jae-Dong;Park, Jae-Yoon;Koh, Hee-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1127-1130
    • /
    • 2003
  • In the last several centuries, humankind have been experienced the material abundance with a development of technical civilization and being industrialized quickly. During the process of this, environmental pollutant have occurred naturally so that humankind have more interests for environment pollutant. Air pollution caused by exhaust from a car is very harmful for human. Most of exhaust from a gasoline engine are $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, and THC(Total Hydrocarbon). The method to remove these kinds of noxious gases are so many thing such as the three catalysts, $NO_x$ catalysts, Filter and so on. However, although air pollution caused by exhaust from motorcycle have also occurred very much, there is no regulation for motorcycle. In this paper, we studied to remove $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, THC exhaust from a motorcycle using non-thermal plasma In the result, $NO_x(NO+NO_2)$ concentration was decreased approximately 70% and THC(Total Hydrocarbon) was removed about 40%.

  • PDF