• Title/Summary/Keyword: Non-Symmetrically(Symmetrically)

Search Result 54, Processing Time 0.032 seconds

An Analytical Study on Inclination of Vertical Piles (연직말뚝의 경사도 오차에 관한 해석적 연구)

  • 장정욱;박춘식;최차석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.463-468
    • /
    • 2003
  • This paper studied the effects of inclination of piles on pile behaviors. The following are the conclusions of this study. (1) When all the piles are inclined to a same direction, the piles reaction, maximum moment and horizontal displacement of footing increase as the angle of inclination increases. (2) When the piles of each opposite side are inclined symmetrically, the vertical reaction either increases or decreases in proportion to the angle of inclination. In this case, the vertical reaction of inclined piles decreases but the vertical reaction of non-Inclined piles increases.

  • PDF

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.297-314
    • /
    • 2009
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis and behavior of the non-prismatic members subjected to temperature changes with the aid of finite element modeling. The fixed-end moments and fixed-end forces of such members due to temperature changes were computed through a comprehensive parametric study. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. The design formulas and the dimensionless design coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight haunches due to temperature changes can be determined using the proposed approach without necessitating a detailed finite element model solution. Additionally, the robust results of the finite element analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.

Development of a Non-contacting Capacitive Sensor for Measurement of ${\mu}{\textrm}{m}$-order Displacements (마이크로미터 변위 측정을 위한 비접촉식 전기용량 센서 개발)

  • 김한준;이래덕;강전홍;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.768-771
    • /
    • 2001
  • Non-contacting capacitive sensor, based on principle of the cross capacitor, for measuring of $\mu\textrm{m}$-order displacements have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors of parallel type with 2-electrodes and 3-electrodes, the developed new sensor was designed to have 4-electrodes, two of them used high and low electrode the other two used as guard electrodes, on a sapphire plate with diameter 17 mm and thickness 0.7 mm, and are symmetrically situated with a constant gap of 0.2 mm between the electrodes. This sensor can be used for measuring the distance between sensor and target not only the metallic but also non-metallic target without ground connection.

  • PDF

A Study of Architectural Core Planning for Plan Types of General Hospital Wards (국내 종합병원 병동부 평면 유형에 따른 코어 연구)

  • Lee, Hyunjin;Park, Jaeseung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.18 no.3
    • /
    • pp.41-49
    • /
    • 2012
  • Most large-sized and tall-risen general hospitals of today fairly depend on in-patient wards in designing hospital styles. The core planning for the efficient movements of various people in the words should take into account the sustainable connections between/among the floors, as well as hospital structures and mechanical functions. This study sampled for the study 19 hospital in-patient wards and investigated their flat-core styles. It was found out that hospital structures are changing from symmetrical styles of triangles, quadrangles and rectangles through bending, configuring, transforming to efficient new styles. Symmetrically quadrangled flat-styles are made of multi-cores spread with main an sub-cores. In contrast, symmetrically triangled flat-styles place the open place in the middle in order to prevent from its deepening, and widened the depth line through changing the outdoor top point. Non-symmetrical rectangles minimized the depth value to maintain the recent styles used in the wards, and tended to prefer the transformed styles of quadrangles. The double-corridors easily transshaped from mono corridors reveals the triangled, W-shaped, or Y-shaped figures. The site area ratio of the cores is 11.95% in average. The number of beds which one elevator covers is 66.51 beds in average, and the size of site area which one elevator covers 216.68m. Most cores on the base floor clustered around the average value, with more than 1000 beds shoes 12.83%, does 12.93%, does 14.64%, does 14.58%, which says that the core ratio increases according to hospital beds.

Natural Frequencies of Sinusoidally Nonsymmetrically Tapered Members (정현상으로 Taper진 부재의 고유진동수)

  • 강명진;안성기;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.263-270
    • /
    • 2000
  • It is generally known that the stress and displacement of a member or a system under dynamic load with frequency ω are magnified by the factor 1/[1-(ω/ω/sub 0/)sup/ 2/]. When the member assumes non-prismatic shape, the natural frequency, ω/sub 0/ is hard or impossible to determine if the conventional method are adopted. In these cases, the numerical methods are provide powerful tools for the solution of frequency problems. In this paper, finite element method is applied to determine the natural frequencies of the non-symmetrically tapered members. The shape of the member is assumed to change sinusoidally along its axis. The results obtained by finite element method are expressed by some simple algebraic equations. The estimated frequencies calculated by the proposed equations coincide well with those by the finite element method.

  • PDF

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Precise in situ Measurement using Non-Contacting Capacitive Sensor with 4-Electrodes (비접촉식 4-전극형 전기용량 센서를 이용한 in situ 정밀측정)

  • 이래덕
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.93-98
    • /
    • 1999
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than 1.95$\pm$0.5 mm have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors, the new sensor is consisted of 4-electrodes which are formed 2 active electrodes and 2 guard electrodes on a sapphire plate with diameter 17mm and thickness 0.7 mm, and are symmetrically situated with constant gap of 0.2 mm among the electrodes. The sensor is evaluated to be correlation coefficient of 0.9987 for the range of 1.95$\pm$0.5 mm and that of 0.9995 for 1.95$\pm$0.25 mm range. This sensor can be used for in situ measurements in the mechanical mirror polishing with precision less than $\pm$1${\mu}{\textrm}{m}$.

  • PDF