• Title/Summary/Keyword: Non-Structural

Search Result 3,796, Processing Time 0.038 seconds

Palaeomagnetism of the Okchon Belt, Korea : Anisotropy of Magnetic Susceptibility (AMS) and Deformation of the Hwanggangri Formation in Chumgju-Suanbo Area (옥천대에 대한 고자기 연구:충주-수안보 일원 황강리층의 변형과 대자율 비등방성(AMS))

  • Son, Moon;Kim, In-Soo;Kang, Hee-Cheol
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.133-146
    • /
    • 2001
  • We report the results of structural field observation and measurement of anisotropy of magnetic susceptibility (AMS) of the diamictitic Hwanggangri Formation distributed in Chungju-Suanbo area of the Okchon Belt, Korea. The outcrops of the Hwanggangri Formation show two types of cleavage in general: slaty cleavage (SI) and crenulation cleavage (5z). 5] cleavage is, however, well observable only in the notheastem (NE) part of study area, while overwhelmed by 52 cleavage in the southwestern (5W) part, indicating stronger later deformation in 5W part of the study area. This partitioning of the study area is corroborated by both IRM and AMS parameters: NE part of the study area is characterized by higher IRM intensity, higher bulk magnetic susceptibility, higher AM5 degree, and by oblate shape of magnetic susceptibility ellipsoid. Their values become drastically lowered toward southwest, and reach to a stable minimum in the whole 5W part of the study area. In addition, degree of both metamorphism and deformation tends to increase gradually from northeast toward southwest and also from northwest toward southeast in the study area. Based on the distribution pattern of the principal axes ( $k_1, k_2, k_3$ axes) of magnetic anisotropy ellipsoids revealed in the NE part of the study area, three episodes of deformation ( $D_1, D_2, D_3$ ) are recognized: D_1$ deformation produced $S_2$ cleavage with NE-5W trend, which is caused by a strong NW-SE tlattening of a coaxial pure shear. $D_2$ deformation produced 5z cleavage characterized by a non-coaxial deformation. It was caused by a ductile or semi-ductile thrusting toward NW and concurrent sinistral shearing along $S_2$ cleavage plane. Lastly, $D_3$ deformation produced tlexural folding of all previous structures with a nearly horizontal NE fold axis. Distribution pattern of the principal axes of magnetic anisotropy ellipsoid from the SW part of the study area, on the other hand, does not show any coherency among sites or samples. We interpret that this dispersed pattern of $k_1, k_2, k_3$ axes together with lower anisotropy strength indicates that magnetic fabrics in the SW part have been disturbed either by a superposition of strong deformation/metamorphism or by a kind of reciprocal strain due to an overlapping of $D_1$ and $D_2$ or by both processes.

  • PDF

Effect of economic growth, industrial structure, efficiency improvement, decarbonization of power sector and fuel substitution for the transition to low carbon society by 2050 (2050년 저탄소 사회로의 전환을 위한 경제성장, 산업구조, 효율개선, 전력 탈탄소화와 연료 대체의 효과)

  • Park, Nyun-Bae;Hong, Sungjun;Park, Sang Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.61-72
    • /
    • 2014
  • This paper analyzed transition pathways toward a low carbon society in Korea to meet global $2^{\circ}C$ climate target. Lower economic growth, industrial structure change, enhance of energy demand management, decarbonization of power sector, and replacement of low carbon fuel could reduce greenhouse gas (GHG) emission from fuel combustion in 2050 by 67% against in 2011, or by 74% against in BAU (Business-As-Usual). Lower economic growth contributes to 13% of cumulative emission reduction relative to BAU, industrial structure change 9%, enhance of energy demand management 72%, decarbonization of power sector 5% and replacement of low carbon fuel 1% respectively. Final energy consumption in 2050 needs to be reduced to 50% relative to 2011, or to 41% relative to BAU. Nuclear, coal and renewable energy represent 31%, 40%, 2% respectively among electricity generation in 2011, but 38%, 2%, 32% in 2050. CCS represents 23% of total generation in 2050. Emission intensity of electricity in 2050 was decreased to 19% relative to 2011, or to 24% relative to BAU. Primary energy in 2050 was decreased to 64% compared to 2011, or to 44% compared to BAU. Final energy consumption, primary energy supply and GHG emission from fuel combustion from 1990 to 2011 increased by 176%, 197%, 146%. Radical change from historical trend is required to transit toward a low carbon society by 2050. Appropriate economic growth, structural change to non-energy intensive industries, energy technology research, development and deployment (RD&D) in terms of enhancement of energy efficiency and low carbon energy supply technologies, and fuel change to electricity and renewable energy are key instruments.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment (열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구)

  • Jeong, Hyeonyi;Moon, Wonjin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

The Results of Drilling in Weondong Mine Area, the Taebaegsan Mineralized District, Republic of Korea (강원도 태백산지역 원동광산 시추탐사연구)

  • Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The Taebaegsan Mineralized District is the most prospective region for the useful mineral commodities such as a coal, non-metallic, metallic mineral in South Korea. From a general point of view, Cambro- Ordovician limestone formations, Myobong slate and Pungchon (Daegi) limestone, are the most fertilizable formations in the Taebaegsan Mineralized District. The geology around Weondong mine area consists mainly of Carboniferous-Triassic formations and Cambro-Ordovician formations intruded by rhyolite/quartz porphyry. The great overthrusted fault of N40~$50^{\circ}E$ direction, so called Weondong overthrust fault, is observed in the central part of the mine area and the NS fault system cuts the overthrusted fault. By postulating from the favorable geological and structural condition around Weondong area, the possibility of deep seated hidden ore bodies is expected. In 2010, on the basis of the results of LOTEM and CSAMT survey, the cross-hole survey was performed for the investigation of the hidden polymetallic ore body in the deep parts of the Weondong mine area and the grade of the newly-discovered orebody is as follows; (1) The cut-off grade for lead-zinc 3%; an weighted average grade 5.50% (2.7 m), (2) The cutoff grade for copper 0.1%; an weighted average grade 0.91% (14.65 m), (3) The cut-off grade for iron 30%; an weighted average grade 38.18% (3.3 m), (4) $WO_3$ for each cut-off grade(0.01%, 0.05%, 0.1%); an weighted average grade 0.29 wt. % (8.8 m), 1.15 wt. % (2.1 m), 1.97 wt. % (1.2 m), (5) $MoS_2$ for each cut-off grade(0.01%, 0.1%); an weighted average grade 0.15 wt. % (6.3S m), 0.28 wt. % (3.15 m), (6) $Ta_2O_5$ for each cut-off grade (0.01%, 0.1%); an weighted average grade 0.13% (19.S m), 1.11% (1.8 m), (7) $Nb_2O_5$ for each cut-offgrade (0.01%, 0.1%); an weighted average grade 0.06% 11.5 m), 0.15% (3.0 m).

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

Direction of Arms Control to Establish Foundation for Peaceful Reunification in Korean Peninsula (한반도 평화통일 기반구축을 위한 군비통제 추진방향)

  • Kim, Jae Chul
    • Convergence Security Journal
    • /
    • v.15 no.6_1
    • /
    • pp.79-92
    • /
    • 2015
  • It is required to expand area of inter-Korean economic cooperation, being limited to non-military field, to military field and then, to positively promote arms control in order to establish foundation for peaceful reunification in Korean peninsula. Reasons why arms control has not been promoted between South and North Korea in the meantime were such original factors as follows; (1) limit of confidence building between the South and the North, (2) functional limit of arms control itself, (3) institutional structural limit between the South and the North, (4) environmental limit at home and abroad. It is necessary to get out from existing frame and to seek a new paradigm in order to overcome above factors and to realize arms control between the South and the North. First, it is required to have prior political dialog at the South-North high-level talks in order to promote arms control and to exercise 'strategic flexibility' during negotiation and promotion process. For this, 'flexible reciprocity' has to be adopted in compliance with situation and conditions. Second, it is necessary to get out from existing principle of 'confidence building in advance and arms reduction later' but to seek the 'simultaneous driving principle of confidence building and arms reduction' as an eclectic approach. Namely, based on reasonable sufficiency, it is required to promote military confidence building and limited arms reduction in parallel, which is a lower level of arms control. Third, as an advisory body of Prime Minister's Office, it is necessary to install an organization exclusively responsible for arms control and to positively handle arms control issue from the standpoint of national policy strategy. If the South-North high-level talks take place, it is necessary to organize and operate 'South-North Joint Arms Control Promotion Board (tentative name)'. Fourth, it is required to exercise more active diplomatic competence in order to create national consensus on necessity of arms control for peaceful reunification and to form more favorable international environment. Especially, it is necessary to think about how to solve nuclear issue of North Korea together in collaboration with international society and how to maintain balance between ROK-US alliance and Sino-Korean cooperation relations.

A STUDY ON THE EFFECT OF THE ND:YAG LASER IRRADIATION ON THE MECHANICALLY EXPOSED PULP (기계적 노출치수의 Nd:YAG 레이저 조사효과에 대한 연구)

  • Lee, Sang-Ho;Lee, Chang-Seop;Kim, Su-Gwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.146-158
    • /
    • 2002
  • The purpose of this study was to investigate the effects of Nd:YAG laser on mechanically exposed pulp of dog by the observation of pulpal inflammatory change and heal process including dentinal bridge, structural changes of fibroblasts of thr remaining vital pulp tissue. In experimental group 1, the exposed pulps were irradiated with Nd:YAG laser(3W, 30Hz, 0.2sec) for $2{\sim}3$ second followed by capped with aluminium tin foil. In group 2 and group 3, the exposed pulps were irradiated with Nd:YAG laser via contact(Group 2) and non-contact(Group 3) methods followed by capped with calciumhydroxide paste. The animal were sacrificed at the intervals of 3, 7, 14 and 30days for histologic evaluation. The results were as follows : 1. The dentinal bridges were formwd more fast and broadly in the experimental group 1 and 2 than other groups, but there were no histologic differences in the degree of their formation among control group, experimental group 1. 2. Odontoblastic activities at amputated pulp was increased in the experimental group 2, 3 than other group but there no histologic difference in the odontblastic activitiy among control group, experimental group 1. 3. The infalmmation was severe at the postoperative 1 week of all groups, but its condition subsideed with time elapsed. At the postoperative 3, 7 days, its condition in experimental group 2, 3 were less severe than in the group 1. 4. There were no histologic differences between the experimental group 2 and 3 according to the degree of dentin bridge formation.

  • PDF