• 제목/요약/키워드: Non-Precious Metal Catalysts

검색결과 16건 처리시간 0.02초

비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산 (Continuous electricity generation in microbial fuel cells with non-precious metal catalysts)

  • 문충만;김동훈
    • 유기물자원화
    • /
    • 제23권1호
    • /
    • pp.45-51
    • /
    • 2015
  • 본 연구에서는 비귀금속 촉매인 iron(II) phthalocyanine (FePc)와 cobalt tetramethoxyphenylporphyrin(CoTMPP)를 환원전극촉매로 이용하여 미생물연료전지의 연속운전을 진행하였다. 연속운전은 유기물 부하 (0.5~3 g COD/L/d)와 HRT (0.25~1 day)의 조건을 달리 운전하여 미생물연료전지의 성능을 평가하였다. 미생물연료전지의 전력밀도는 환원전극의 성능에 크게 영향을 받았으며, 최대전력밀도는 $3.3W/m^3$로 백금을 사용한 미생물연료전지에서 나타났다. 하지만, HRT의 조건을 달리 한 실험에서 FePc를 사용한 미생물연료전지가 백금을 사용한 미생물연료전지와 유사한 성능을 나타냈으며, 연속운전에서 백금 촉매를 대체할 수 있는 적합한 물질로 나타났다. 반면에 CoTMPP를 사용한 미생물연료전지는 연속운전에서 내부 저항의 급격한 증가로 전력밀도가 급격히 감소하였다.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

전도성 고분자를 이용한 연료전지용 비백금 촉매의 특성화 정량 (Characterization of Non-precious Metal for Fuel Cell Catalyst with Conducting Polymer)

  • 김현종;이효준;안지은;김한성;이호년
    • 응용화학
    • /
    • 제15권2호
    • /
    • pp.137-140
    • /
    • 2011
  • Excellent active and stable platinum catalyst fuel cells currently being used as a catalyst. However, because of the high price of platinum catalyst, such as non-precious catalyst has been studied by a variety of fuel cell catalysts. In this study, Co/ PANi//CNT composite catalyst after synthesis through various heating process was to increase the activity of the catalyst. At 700℃ showed the best catalytic activity, using a composite catalyst was to be used as cathode electrodes in fuel cell.

음이온교환막 수전해 촉매기술 동향 (Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis)

  • 김지영;이기영
    • 전기화학회지
    • /
    • 제25권2호
    • /
    • pp.69-80
    • /
    • 2022
  • 고순도 수소생산을 위한 음이온 교환막 수전해는 양성자 교환막 수전해 시스템에서 사용되는 기존 귀금속 촉매 대신 저렴한 비귀금속 기반 촉매를 사용하여 차세대 녹색 수소 생산 기술로 많은 관심을 받고 있다. 하지만 음이온 교환막 수전해 기술은 개발 초기 단계이기 때문에 음이온 교환막 수전해의 핵심 요소인 음이온 교환막, 이오노머, 전극지지체 및 촉매에 관한 연구 수행이 필요하다. 그 중, 현재 촉매 분야에서 진행되고 있는 연구들은 기개발된 알칼리용 반쪽전지 촉매를 음이온 교환막 시스템에 적용하는 방향의 연구가 진행되고 있으며 적용된 촉매는 낮은 활성도와 내구성의 문제점을 가진다. 이에 본 총설은 알칼리성 매질에서 비귀금속 기반 촉매를 사용하여 산소발생반응 및 수소발생반응을 촉진시킨 촉매 합성 기술을 제시하였다.

제일원리 전산모사법을 이용한 폐양액 수전해용 코발트 산화물 촉매의 흡착 이온 특성 연구 (Investigating adsorption ion characteristics on cobalt oxides catalyst in electrolysis of waste alkaline solutions using ab-initio study)

  • 우주완;이종민;서민호
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.427-436
    • /
    • 2023
  • In the industry, it is recognized that human activities significantly lead to a large amount of wastewater, mainly due to the increased use of water and energy. As a result, the growing field of wastewater resource technology is getting more attention. The common technology for hydrogen production, water electrolysis, requires purified water, leading to the need for desalination and reprocessing. However, producing hydrogen directly from wastewater could be a more cost-effective option compared to traditional methods. To achieve this, a series of first-principle computational simulations were conducted to assess how waste nutrient ions affect standard electrolysis catalysts. This study focused on understanding the adsorption mechanisms of byproducts related to the oxygen evolution reaction (OER) in anion exchange membrane (AEM) electrolysis, using Co3O4 as a typical non-precious metal catalyst. At the same time, efforts were made to develop a comprehensive free energy prediction model for more accurate predictions of OER results.

전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석 (Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory)

  • 최혁;강은지;김현유
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.