• Title/Summary/Keyword: Non-Point source

Search Result 719, Processing Time 0.025 seconds

The Effective Approach for Non-Point Source Management (효과적인 비점오염원관리를 위한 접근 방향)

  • Park, Jae Hong;Ryu, Jichul;Shin, Dong Seok;Lee, Jae Kwan
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • In order to manage non-point sources, the paradigm of the system should be changed so that the management of non-point sources will be systematized from the beginning of the use and development of the land. It is necessary to change the method of national subsidy support and poeration plan for the non-point source management area. In order to increase the effectiveness of the non-point source reduction project, it is necessary to provide a minimum support ratio and to provide additional support according to the performance of the local government. A new system should be established to evaluate the performance of non-point source reduction projects and to monitor the operational effectiveness. It is necessary to establish the related rules that can lead the local government to take responsible administration so that the local governments faithfully carry out the non-point source reduction project and achieve the planned achievement and become the sustainable maintenance. Alternative solutions are needed, such as problems with the use of $100{\mu}m$ filter in automatic sampling and analysis, timely acquisition of water sampling and analysis during rainfall, and effective management of non-point sources network operation management. As an alternative, it is necessary to consider improving the performance of sampling and analysis equipment, and operate the base station. In addition, countermeasures are needed if the amount of pollutant reduction according to the non-point source reduction facility promoted by the national subsidy is required to be used as the development load of the TMDLs. As an alternative, it is possible to consider supporting incentive type of part of the maintenance cost of the non-point source reduction facility depending on the amount of pollutants reduction.

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM (EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석)

  • Cho, SeonJu;Kang, MinJi;Kwon, Hyeok;Lee, JaeWoon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

A Study on Runoff Characteristics of Non-Point Source Pollution with Rainfall in Mandae-cheon Watershed (만대천 유역의 강우량에 의한 비점오염물질 유출특성에 관한 연구)

  • Choi, Han-Guy;Lee, Jin-Tae;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.27-35
    • /
    • 2005
  • Non-point source pollution, which is found in soil, urban area, and agricultural area, is difficult to have its amount to be estimated. Moreover, it is hard to come up with a counterplan to cope with this pollutant. Hence, the watershed of Mandae-cheon located at the upstream of Soyang Lake was chosen as our site of study. We analyzed the relationship between precipitation level of each month and pollution load in the watershed by using statistical methods: measuring BOD, T-N and T-P - which are the causes of eutrophication - in the water; and analyzing the changes in water quality caused by precipitation level of nth.

  • PDF

Runoff Characteristics of Non-point Source According to Rainfall in Nam Watershed (남천에서의 강우시 비점오염물질의 유출특성)

  • Jang, Seong-Ho;Park, Jin-Sick
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Nam watershed. Land-uses of the Nam watershed were surveyed paddy field 4.5%, crop field 6.8%, mountainous 78.7%, urban 2.4%, and etc. 7.7%. Mean runoff coefficients in each area were observed Ⅰ area 0.08, Ⅱ area 0.08, and Ⅲ area 0.05. In the relationship between the rainfall and peak-flow, correlation coefficients(r) were investigated Ⅰ area -0.8609, Ⅱ area 0.6035, and Ⅲ area -0.4913. In the relationship between the antecedent dry period and first flow runoff, correlation coefficients(r) were investigated Ⅰ area -0.9093, Ⅱ area -0.1039, and Ⅲ area -0.7317. The discharge of pollutant concentrations relates to the flow rate of storm-water. In the relationship between the rainfall and watershed loading, exponent values of BOD, COD, SS, and T-N were estimated to 1.2751, 1.2003, 1.3744, and 1.1262, respectively.

Comparison of Discharge Characteristics of NPS Pollutant Loads from Urban, Agricultural and Forestry Watersheds (도시, 농촌 및 임야유역으로부터 배출되는 비점원 오염부하의 특성비교)

  • Yur, Joonghyun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • Impacts of non-point source pollution on water quality are well known. In this paper, effects of land use, precipitation characteristics, discharge characteristics on non-point source pollutant loadings at urban, agricultural and forestry watersheds were discussed. Rainfall runoffs from fifteen rainfall events were sampled and analysed at two urban watersheds, one rural watershed, and one forestry watershed. EMCs (Event Mean Concentration) were calculated based on monitored flow rates and concentrations. Statistical analysis carried out with runoff loadings and affecting variables indicated that runoff loadings are weakly correlated with the rainfall intensity and the dry days before rainfall events while showed no correlations with rainfall depth nor runoff quantity. By comparing EMCs between study watersheds on log-normal cumulative probability scale, EMCs ranking were in the descending order of urban watershed>agricultural watershed>forestry watershed for SS, TCOD, TN, and TP.

Urban Stormwater Capture Curve using 3-Parameter Mixed Exponential Probability Density Function (3변수 혼합 지수 확률밀도함수를 이용한 도시 강우 유출수 포착곡선의 작성)

  • Han, Suhee;Park, Moo Jong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.430-435
    • /
    • 2008
  • In order to design Non-point source management, the aspect of statistical features of the entire precipitation data should be focused since non-point source discharge is driven by continuous rainfall runoffs. 3-parameter mixed exponential probability density function is used to establish urban stormwater capture curve instead of previous single-parameter exponential PDF. Then, recent 10-year data in Busan are applied to establish the curve. The result shows that 3-parameter mixed PDF gives better resolution.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Farming Area (농촌지역의 비점오염원 유출 특성에 관한 연구)

  • Gil, Kyung-Ik;Lee, Byung-Soo;Lee, Sang-Soo;Park, Moo-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.783-786
    • /
    • 2008
  • The main goal of this study is to understand the effects of direct-runoff of chemistry and organic fertilizers which are adsorbing to sediment from farmland and non-point source discharge characteristics which are discharged to stream with soil erosion when rainfalls. pollutographs of TSS, BOD, COD, TN, and TP were measured for 10 rainfall events at watershed. EMC (Event Mean Concentration) were calculated for each rainfall event using quality and quantity measured. The result shows that the EMC ranges of 95% confidence intervals are 50.5-203 mg/L for TSS, 0.8-14.2 mg/L for $BOD_5$, 4.2-20.7 mg/L for $COD_{Mn}$, 0.2-0.5 mg/L for TP, 2.4-4.5 mg/L for TN, 1.36-3.04 mg/L for NO3--N, 0.13-0.42 mg/L for NH4+-N and 0.82-1.77 mg/L for TKN.

  • PDF

A Study on the Analysis of Non-point Source Runoff Characteristics and Verification of Unit Pollutant Load Considering Baseflow Runoff (기저유출을 고려한 비점오염 유출특성 분석과 원단위 검증에 관한 연구)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this study, the characteristics of non-point source pollution runoff and the possibility of using new unit load were investigated by using pollutant load based on monitoring data considering baseflow. For this purpose, the components of hydrograph were separated by using digital filter method and the numerical integration method was applied to calculate the non-point source pollutant load for nine rainfall events in Juwon river in the Geum River basin. As a result of this study, the mean contribution rate of non-point pollutant was 31.34% for BOD, 58.94% for T-N, and 50.42% for T-P and BOD was more influenced by baseflow pollutant. Also, it was analyzed the pollutant load using the new unit load is closer to the observation load than the old unit load. This result implies that it is necessary to manage not only pollutant load due to direct runoff but also pollutant load due to baseflow runoff for efficient water quality management of the watershed.

The Application Plans of Slag to Prevent Non-point Source Pollutants Flowing into the Retention Pond (비점오염원의 유수지 유입 방지를 위한 슬래그 활용 방안)

  • Park, Jung-Hwan;Kim, Jin-Han;Jung, Jong-Tai;Jun, Se-Jin;Park, Han-Bong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • This study was performed to figure out what would be effective to maintain good water quality in the retention pond which was badly polluted before. In order to keep the good water quality of the retention pond it is necessary to prevent outer non-point source pollutants from flowing into the pond. In this study, we proposed to use porous slag as a blockage of the inflow into the pond from external non-point sources. We experimented with porous slag nets to see how the water is effected. With the results of the experiments, we found out there is a close correlation($r^2=0.9765$) between contact time and the removal rate of phosphorus, therefore we can conclude that contact time affects removal rate greatly. Synthetic wastewater, activated sludge effluent, and sewage were passed through a porous slag packed bed, both phosphorus and the suspended solid in water were removed highly. With the results of these tests, we proposed to set up a porous slag packed bed inside of the retention pond and revetment to prevent external non-point source pollutants flowing into the retention pond.