• Title/Summary/Keyword: Non-Parametric Method

Search Result 416, Processing Time 0.034 seconds

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

The Price of Risk in the Korean Stock Distribution Market after the Global Financial Crisis (글로벌 금융위기 이후 한국 주식유통시장의 위험가격에 관한 연구)

  • Sohn, Kyoung-Woo;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.71-82
    • /
    • 2015
  • Purpose - The purpose of this study is to investigate risk price implied from the pricing kernel of Korean stock distribution market. Recently, it is considered that the quantitative easing programs of major developed countries are contributing to a reduction in global uncertainty caused by the 2007~2009 financial crisis. If true, the risk premium as compensation for global systemic risk or economic uncertainty should show a decrease. We examine whether the risk price in the Korean stock distribution market has declined in recent years, and attempt to provide practical implications for investors to manage their portfolios more efficiently, as well as academic implications. Research design, data and methodology - To estimate the risk price, we adopt a non-parametric method; the minimum norm pricing kernel method under the LOP (Law of One Price) constraint. For the estimation, we use 17 industry sorted portfolios provided by the KRX (Korea Exchange). Additionally, the monthly returns of the 17 industry sorted portfolios, from July 2000 to June 2014, are utilized as data samples. We set 120 months (10 years) as the estimation window, and estimate the risk prices from July 2010 to June 2014 by month. Moreover, we analyze correlation between any of the two industry portfolios within the 17 industry portfolios to suggest further economic implications of the risk price we estimate. Results - According to our results, the risk price in the Korean stock distribution market shows a decline over the period of July 2010 to June 2014 with statistical significance. During the period of the declining risk price, the average correlation level between any of the two industry portfolios also shows a decrease, whereas the standard deviation of the average correlation shows an increase. The results imply that the amount of systematic risk in the Korea stock distribution market has decreased, whereas the amount of industry-specific risk has increased. It is one of the well known empirical results that correlation and uncertainty are positively correlated, therefore, the declining correlation may be the result of decreased global economic uncertainty. Meanwhile, less asset correlation enables investors to build portfolios with less systematic risk, therefore the investors require lower risk premiums for the efficient portfolio, resulting in the declining risk price. Conclusions - Our results may provide evidence of reduction in global systemic risk or economic uncertainty in the Korean stock distribution market. However, to defend the argument, further analysis should be done. For instance, the change of global uncertainty could be measured with funding costs in the global money market; subsequently, the relation between global uncertainty and the price of risk might be directly observable. In addition, as time goes by, observations of the risk price could be extended, enabling us to confirm the relation between the global uncertainty and the effect of quantitative easing. These topics are beyond our scope here, therefore we reserve them for future research.

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Change detection algorithm based on amplitude statistical distribution for high resolution SAR image (통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용)

  • Lee, Kiwoong;Kang, Seoli;Kim, Ahleum;Song, Kyungmin;Lee, Wookyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.227-244
    • /
    • 2015
  • Synthetic Aperture Radar is able to provide images of wide coverage in day, night, and all-weather conditions. Recently, as the SAR image resolution improves up to the sub-meter level, their applications are rapidly expanding accordingly. Especially there is a growing interest in the use of geographic information of high resolution SAR images and the change detection will be one of the most important technique for their applications. In this paper, an automatic threshold tracking and change detection algorithm is proposed applicable to high-resolution SAR images. To detect changes within SAR image, a reference image is generated using log-ratio operator and its amplitude distribution is estimated through K-S test. Assuming SAR image has a non-gaussian amplitude distribution, a generalized thresholding technique is applied using Kittler and Illingworth minimum-error estimation. Also, MoLC parametric estimation method is adopted to improve the algorithm performance on rough ground target. The implemented algorithm is tested and verified on the simulated SAR raw data. Then, it is applied to the spaceborne high-resolution SAR images taken by Cosmo-Skymed and KOMPSAT-5 and the performances are analyzed and compared.

Flexural Behavior of Reinforced Concrete Beams Retrofitted with Modified Polymer Mortar System (폴리머 모르타르로 단면을 복구한 철근콘크리트 보의 휨 거동)

  • Hong Geon-Ho;Choi Eun-Gyu;Lee Su-Jin;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.94-101
    • /
    • 2004
  • This study shows the test results of seven RC beams retrofitted with modified polymer system and parametric study about the effects of tensile strength of retrofitting materials by analytical method on the flexural behavior. The main parameters are the retrofitted depth and length. The beams are loaded to the failure by four-point loading. Test results show that the effect of the retrofitted length on the structural behavior is more significant than that of depth. As the retrofitted depth is increased, the beams represents the brittle failure mode The non-linear analysis is carried out to grasp the effect of the tensile strength of retrofitting material on the structural behavior. As the retrofitted depth and length are increased, the tensile strength becomes more effective so these parameters should be considered to determine the retrofitted area. The analytical results show that failure strength is less than that of experimental results, but the stiffness is vice versa.

Human Epididymis Protein 4 Reference Intervals in a Multiethnic Asian Women Population

  • Mokhtar, N.M.;Thevarajah, M.;M.A., Noorazmi;M., Isahak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6391-6395
    • /
    • 2012
  • Background: Ovarian cancer is ranked as the fifth most common cause of cancer death in women. In Malaysia, it is the fourth most common cancer in females. CA125 has been the tumor marker of choice in ovarian cancer but its diagnostic specificity in early stages is only 50%. Hence, there is a critical need to identify an alternative tumor marker that is capable of detecting detect ovarian cancer at an early stage. HE4 is a new tumor marker proposed for the early diagnosis of ovarian cancer and disease recurrence. Currently, none of the normal ranges of HE4 quoted in the literature are based on data for a multiethnic Asian population. Therefore, the aim of this study was to determine reference intervals for HE4 in an Asian population presenting in University Malaya Medical Centre, a tertiary reference hospital. Materials and Methods: 300 healthy women were recruited comprising 150 premenopausal and 150 postmenopausal women, aged from 20-76 years. All women were subjected to a pelvic ultrasonograph and were confirmed to be free from ovarian pathology on recruitment. Serum HE4 levels were determined by chemiluminescent microparticle immunoassay (CMIA, Abbott Architect). The reference intervals were determined following CLSI guidelines (C28-A2) using a non-parametric method. Results: The upper limits of the $95^{th}$ percentile reference interval (90%CI) for all the women collectively were 64.6 pmol/L, and 58.4 pmol/L for premenopausal) and 69.0 pmol/L for postmenopausal. The concentration of HE4 was noted to increase with age especially in women who were more than 50 years old. We also noted that our proposed reference limit was lower compared to the level given by manufacturer Abbott Architect HE4 kit insert (58.4 vs 70 pmol/L for premenopausal group and 69.0 vs 140 pmol/L in the postmenopausal group). The study also showed a significant difference in HE4 concentrations between ethnic groups (Malays and Indians). The levels of HE4 in Indians appeared higher than in Malays (p<0.05), while no significant differences were noted between the Malays and Chinese ethnic groups. Conclusions: More data are needed to establish a reference interval that will better represent the multiethnic Malaysian population. Probably a larger sampling size of equal representation of the Malay, Chinese, Indians as well as the other native ethnic communities will give us a greater confidence on whether genetics plays a role in reference interval determination.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF