• Title/Summary/Keyword: Non-OPC

Search Result 68, Processing Time 0.028 seconds

Dispersion-Managed Optical Transmission Link Adding of Non-Midway OPC (Non-Midway OPC를 추가한 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.408-414
    • /
    • 2020
  • The method of overcoming the limitation of optical phase conjugator applied into optical long-haul link for transmitting high capacity wavelength division multiplexed (WDM) channels was investigated. The configuration of optical link was based on dispersion-managed link, in which dispersion compensating fiber inserted into each fiber span with single mode fiber, and optical phase conjugator was added into suitable location of link. The maximum number of fiber spans as a function of the launch power of WDM channels in optical link with optical phase conjugator placed at the proposed location was induced and compared for analyzing the compensation performance of the distorted WDM channels. It was confirmed that the more optical phase conjugator depart from the midway of total transmission length, the less the distorted WDM channels was compensated, however, it was also confirmed that the degradation of compensation can be overcome by the suitable value of residual dispersion per span and by the reasonable choice of fiber span controlling total dispersion accumulated in overall transmission link.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Kim Eun-Mi;Lee Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.361-364
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8\times40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI.

  • PDF

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Analysis of Permeation Efficiency in Soil for OPC and Non-Pollution MIS Grouts by Laboratory Model Test (실내모형시험을 통한 OPC와 친환경 MIS 그라우트의 지반 침투성능 분석)

  • Ahn, Jung-Ho;Lim, Heui-Dae;Choi, Dong-Nam;Song, Young-Su
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.307-315
    • /
    • 2012
  • In this paper, a laboratory model test was conducted to evaluate grouting efficiency of ordinary portland cement(OPC) and micro cement used in MIS(Micro-Injection Process System). For this research, a injection equipment was developed for pressure permeation which can evenly simulate various grouting tests in a laboratory and suggested a standard for the production of the test specimen. Using the injection device, the laboratory injection tests of grouts were prepared with water/cement ratio of 1:1, 2:1, 3:1, 4:1, and 5:1. The analysis of injection test for pressure permeation showed that the efficiency of injection increases linearly as the water/cement ratio increases. Comparison of efficiency of the injection indicates that MIS with a relatively smaller average diameter shows more efficient injection than the OPC. In the low ratio of water/cement as 2:1~1:1, the injection efficiency of OPC was especially poor. Also, a nonlinear grout volume-injection time is represented by a hyperbolic model and grout volume predicted by hyperbolic model was compared with the value measured. From the comparison, it shows that the hyperbolic model has the potential of evaluating the efficiency of grouting.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Performance Improvement of 24X40 Gbps NRZ Channels in WDM System with 1,000 km NZ-DSF using Optimal Parameters of Optical Phase Conjugator

  • Lee, Seong-Real;Chung, Jae-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the new method alternating with the method for forming the symmetrical distribution of power and local dispersion in high bit-rate WDM system with optical phase conjugator (OPC) is proposed. The proposed method is carried by finding out the optimal values of OPC position offset and fiber dispersion offset. It is assumed to be that NRZ-formatted 24-channels of 40 Gbps are simultaneously propagated in WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km. It is confirmed that the compensation extents of overall WDM channels are more improved by applying the induced optimal values into WDM system than those in WDM system with the conventional mid-span spectral inversion (MSSI) technique, and the searching procedure of the optimal values makes little difference of performance if the optimal value of one parameter related with another parameter. And, it is confirmed that the flexible design of WDM system with OPC is possible by effectiviely using by these optimal values. Thus, it is expected that the proposed method alternate with the forming method of the symmetrical distributions of power and local dispersion.

Mechanical and Germination Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성과 식생 발아 특성)

  • Lee, Miji;Mun, Kyoungju;Yoon, Gillim;Eum, Hyunmi;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper, mechanical and germination characteristics of stabilized dredged soils were investigated to recycle dredged soil in eco-friendly manner such as waterfront construction. Non sintering binder (NSB), which was developed by using interchemical reactions between slag, high-calcium fly ash, alkali activator on the dredged marine clay, was added to dredged soil. Ordinary portland cement was also used for the comparison of two binders. Experimental tests such as flow test and unconfined compressive test were carried out to evaluate characteristics of stabilized dredged soil. Leaching test, pH measure, vegetation germination test were also conducted to consider environmental applicability. The unconfined compressive tests shows that unconfined compressive strength (UCS) also increases with the increase of curing time and mixed ratio. UCS of NSB mixtures were higher than those of OPC mixtures. Germination tests showed that germination and sprouting date are better in NSB mixture than OPC mixture. It can be explained that germination decreased as pH and 7-day strength increased.

Compensation for Distorted WDM Signals by Periodic-shaped Dispersion Map and Non-midway Optical Phase Conjugator (주기적 구조의 분산 맵과 Non-midway 광 위상 공액기에 의한 왜곡된 WDM 신호의 보상)

  • Kweon, Soon-Nyu;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • In order to install ultra wide band and ultra long-haul transmission link based on standard single mode fiber, optical signal distortion due to chromatic dispersion and nonlinear Kerr effect must to be compensated. In this paper, optical link consisted of dispersion management and optical phase conjugation is proposed for compensation of the distorted wavelength division multiplexed (WDM) channels. Dispersion map profile in the proposed dispersion-managed link is configured by periodic repetitive shape, and optical phase conjugator is placed at various position including the midway of total transmission length. It is confirmed from simulation results that when the residual dispersion per span (RDPS) selected in the proposed dispersion-managed link to be large, the compensation of distorted WDM channels in the non-midway OPC system is more improved than the conventional dispersion-managed link.

Development of Conductive elastomer Roller for Image Forming High-Quality (고품질 화상형성을 위한 도전성 탄성체 롤러의 개발)

  • Jun, Ho-Ik;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3923-3927
    • /
    • 2010
  • Primary charging roller rotated with contacting surface of OPC drum and take charge OPC drum. Owing to this reason, primary charging roller is made by elasticity substance with electric conduction. Properties of charging and image is changed by class of coating, method of coating and environment. This study developed coating material and coating method to make Image Forming of High- quality.

Development of Non-cement Material using Recycled Resources (유동층연소방식 석탄재를 활용한 무시멘트 결합재)

  • Mun, Kyoung-Ju;Lee, Min-Hi;Yoon, Seong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.156-157
    • /
    • 2014
  • Inorganic binding material was made by recycled resource and its applicability as pile-filling material was examined. The result was that the material had same liquidity with the liquidity of OPC and high reactivity with site soil. According to dynamic/static loading tests by site test-construction, the inorganic binding material met both design bearing capacity and settlement. Since the inorganic binding material showed same or better performance than OPC, the utilization possibility of the inorganic binding material made of recycled resource as pile-filling material was verified.

  • PDF